MATH 11: MULTIVARIABLE CALCULUS
 FALL 2018
 HOMEWORK \#5

Please turn in your completed homework assignment by leaving it in the boxes labeled "Math 11" in the hallway outside of Kemeny 105 anytime before 3:30 p.m. on Wednesday, October 17.

Problem 1. Find the extreme values of $f(x, y)=e^{-x y}$ on the domain $x^{2}+4 y^{2} \leq 1$. For part of the solution, use the method of Lagrange multipliers.

Problem 2.

(a) Show that if f is a constant function of two variables (so $f(x, y)=k$ for some constant $k)$ and $R=[a, b] \times[c, d]$, then

$$
\iint_{R} k d A=k(b-a)(d-c) .
$$

(b) Use part (a) to show that

$$
0 \leq \iint_{R} \sin (\pi x) \cos (\pi y) d A \leq \frac{1}{32},
$$

where $R=[0,1 / 4] \times[1 / 4,1 / 2]$.
Problem 3. In evaluating a double integral over a region D, a sum of iterated integrals was obtained as follows:

$$
\iint_{D} f(x, y) d A=\int_{0}^{2} \int_{0}^{\sqrt{y}} f(x, y) d x d y+\int_{2}^{4} \int_{y-2}^{\sqrt{y}} f(x, y) d x d y
$$

Sketch the region D and express the double integral as an iterated integral with reversed order of integration.

