MATH 11: MULTIVARIABLE CALCULUS
 FALL 2018
 HOMEWORK \#3

Please turn in your completed homework assignment by leaving it in the boxes labeled "Math 11 " in the hallway outside of Kemeny 105 anytime before 3:30 p.m. on Tuesday, October 2.

Problem 1. Consider the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{4}}{x^{2}+y^{8}}
$$

If it exists, find its value; if not show that it does not exist.
Problem 2. Does there exist a differentiable function $f(x, y)$ with the given partial derivatives? If so, give an example; otherwise, explain why not.
(a) $f_{x}=1-2 x y, \quad f_{y}=2-x^{2}$
(b) $f_{x}=x+y^{2}, \quad f_{y}=x-y^{2}$

Problem 3. Suppose S is a surface in \mathbb{R}^{3} that can be described as the graph of a differentiable function $f(x, y)$. The curves given by $\mathbf{r}_{1}(t)=\left\langle 1+t, t^{2}-t+2, e^{t}+3\right\rangle$ and $\mathbf{r}_{\mathbf{2}}(s)=\left\langle s^{2}+2 s+2,1-s, 3 s+7\right\rangle$ both lie on S.
(a) Find the equation of the tangent plane to S at the point $(1,2,4)$.
(b) Find $f_{x}(1,2)$ and $f_{y}(1,2)$.

