Math 11 Fall 2016 Section 1 Friday, September 30, 2016

First, some important points from the last class:

Definition: The function $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable at (x_0, y_0) if there is a function

$$L(x,y) = ax + by + c$$

(where a, b, and c are constants) such that the graphs of f and L are tangent at the point $(x_0, y_0, f(x_0, y_0))$. This means that

$$L(x_0, y_0) = f(x_0, y_0)$$

and

$$\lim_{(x,y)\to(x_0,y_0)}\frac{f(x,y)-L(x,y)}{\sqrt{(x-x_0)^2+(y-y_0)^2}}=0.$$

Theorem: If $f : \mathbb{R}^2 \to \mathbb{R}$ is differentiable at (x_0, y_0) , then the tangent plane at the point $(x_0, y_0, f(x_0, y_0))$ is the graph of the function

$$L(x,y) = \left(\frac{\partial f}{\partial x}(x_0,y_0)\right)(x-x_0) + \left(\frac{\partial f}{\partial xy}(x_0,y_0)\right)(y-y_0) + f(x_0,y_0).$$

Note: When f is differentiable at (x_0, y_0) , we can approximate f(x, y) near (x_0, y_0) by

 $f(x,y) \approx L(x,y).$

This is called the *linear approximation* or *tangent approximation* to f near (x_0, y_0) . The function L(x, y) is called the *linearization* of f at (x_0, y_0) .

Definition: If $f : \mathbb{R}^2 \to \mathbb{R}$ is differentiable, the *differential* of f is

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy.$$

Theorem: If the partial derivatives of f(x, y) are defined on a neighborhood of (x_0, y_0) and continuous at (x_0, y_0) , then f is differentiable at (x_0, y_0) .

Note: These definitions and theorems also hold for $f : \mathbb{R}^3 \to \mathbb{R}$, and in general for $f : \mathbb{R}^n \to \mathbb{R}$.

Warm-up Problems:

A surface S has the equation z = f(x, y). At (x, y) = (1, 2) we have

$$z = 45$$
 $\frac{\partial z}{\partial x} = 2$ $\frac{\partial z}{\partial y} = 1$

A bug is crawling on the surface S, and a light shining directly down through S (which is transparent) casts the bug's shadow on the xy-plane; the position of the shadow is $\vec{r}(t)$. At time t_0 , the bug's shadow has position $\vec{r}(t_0) = \langle 1, 2 \rangle$ and velocity $\vec{r}'(t_0) = \langle 3, -1 \rangle$.

1. Find an equation for the tangent plane to S at the point (1, 2, 45).

$$z = 45 + (2)(x - 1) + (1)(y - 2).$$

2. Use the tangent approximation

$$\vec{r}(t) \approx \vec{r}(t_0) + (t - t_0)\vec{r}'(t_0)$$

to approximate the shadow's position at time $t_0 + \Delta t$, where Δt is a very small change in t.

$$\vec{r}(t_0 + \Delta t) \approx \langle 1, 2 \rangle + \Delta t \, \langle 3, -1 \rangle = \langle 1 + 3\Delta t, 2 - \Delta t \rangle = \left\langle 1 + \underbrace{\underbrace{(3)}_{\Delta x} \Delta t}_{\Delta x}, 2 + \underbrace{\underbrace{(-1)}_{\Delta y} \Delta t}_{\Delta y} \right\rangle.$$

3. Use the equation of the tangent plane to S to approximate the bug's new z-coordinate.

$$z \approx 45 + 2(x - 1) + 1(y - 2) \approx 45 + 2((1 + 3\Delta t) - 1) + 1((2 - \Delta t) - 2) = 45 + (2)(3)\Delta t + (1)(-1)\Delta t = 45 + \underbrace{(2)}_{\frac{\partial z}{\partial x}} \underbrace{\underbrace{(3)}_{\Delta x} \Delta t}_{\frac{\partial z}{\partial y}} \underbrace{(-1)}_{\frac{\partial z}{\partial y}} \underbrace{(-1)}_{\Delta y} \underbrace{(-1)}_{\Delta z} \Delta t$$

We can rewrite this:

$$\begin{split} f(\vec{r}(t_0 + \Delta t)) &\approx 45 + \Big(\underbrace{\langle 2, 1 \rangle}_{\left\langle \frac{\partial f}{\partial x}(1, 2), \frac{\partial f}{\partial y}(1, 2) \right\rangle} \cdot \underbrace{\langle 3, -1 \rangle}_{\vec{r}'(t_0)} \Big) \Delta t. \\ f(\vec{r}(t_0 + \Delta t)) &\approx f(\vec{r}(t_0)) + \left(\left\langle \frac{\partial z}{\partial x}(\vec{r}(t_0)), \frac{\partial z}{\partial y}(\vec{r}(t_0)) \right\rangle \cdot \vec{r}'(t_0) \right) \Delta t. \\ \boxed{\frac{f(\vec{r}(t_0 + \Delta t)) - f(\vec{r}(t_0))}{\Delta t} \approx \left(\left\langle \frac{\partial z}{\partial x}(\vec{r}(t_0)), \frac{\partial z}{\partial y}(\vec{r}(t_0)) \right\rangle \cdot \vec{r}'(t_0) \right)}. \end{split}$$

Definition: If $f : \mathbb{R}^n \to \mathbb{R}$, the *gradient* of f is the vector whose components are its partial derivatives:

$$\nabla f(x,y,z) = \left\langle \frac{\partial f}{\partial x}(x,y,z), \frac{\partial f}{\partial y}(x,y,z), \frac{\partial f}{\partial z}(x,y,z) \right\rangle.$$

If f is differentiable, we may also call ∇f the total derivative of f.

Theorem (the chain rule): If $\vec{r}(t)$ is differentiable at t_0 , and f(x, y, z) is differentiable at $\vec{r}(t_0)$, then

$$\frac{d}{dt}\left(f(\vec{r}(t))\right) = \nabla f(\vec{r}(t)) \cdot \vec{r}'(t).$$

Rephrasing this, if w is a function of x, y, z, and x, y, z are all functions of t, then

$$\frac{dw}{dt} = \left\langle \frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}, \frac{\partial w}{\partial z} \right\rangle \cdot \left\langle \frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt} \right\rangle = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt}$$
$$\Delta w \approx \frac{\partial w}{\partial x}\Delta x + \frac{\partial w}{\partial y}\Delta y + \frac{\partial w}{\partial z}\Delta z \approx \frac{\partial w}{\partial x}\frac{dx}{dt}\Delta t + \frac{\partial w}{\partial y}\frac{dy}{dt}\Delta t + \frac{\partial w}{\partial z}\frac{dz}{dt}\Delta t$$

Example If $w = x^2 y^2$, $x = \sin(t)$, and $y = \cos(t)$, find $\frac{dw}{dt}$ at $t = \frac{\pi}{3}$. $t = \frac{\pi}{3}$ $x = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$ $y = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$ $\frac{\partial w}{\partial x} = 2xy^2 = \frac{\sqrt{3}}{4}$ $\frac{\partial w}{\partial y} = 2x^2y = \frac{3}{4}$ $\frac{dx}{dt} = \cos(t) = \frac{1}{2}$ $\frac{dy}{dt} = -\sin(t) = -\frac{\sqrt{3}}{2}$ $\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} = \left(\frac{\sqrt{3}}{4}\right)\left(\frac{1}{2}\right) + \left(\frac{3}{4}\right)\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\sqrt{3}}{4}$

The chain rule in different settings:

$$\frac{t \to x \to w}{dt} = \frac{dw}{dx}\frac{dx}{dt}$$

$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt}$$

$$\begin{aligned} (s,t) &\to (x,y,z) \to w \\ \frac{\partial w}{\partial t} &= \frac{\partial w}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial t} \end{aligned}$$

Example: Suppose $g(x,y) = f(x^2 - y^2, y^2 - x^2)$. Show that g satisfies the differential equation

$$y\frac{\partial g}{\partial x} + x\frac{\partial g}{\partial y} = 0.$$

Introduce new variables $s = x^2 - y^2$ and $t = y^2 - x^2$, and write w = f(s, t). We want to show that $\partial w = \partial w$

$$y\frac{\partial w}{\partial x} + x\frac{\partial w}{\partial y} = 0.$$

Using the Chain Rule,

$$\frac{\partial w}{\partial x} = \frac{\partial w}{\partial s}\frac{\partial s}{\partial x} + \frac{\partial w}{\partial t}\frac{\partial t}{\partial x} = \frac{\partial w}{\partial s}(2x) + \frac{\partial w}{\partial t}(-2x).$$
$$\frac{\partial w}{\partial y} = \frac{\partial w}{\partial s}\frac{\partial s}{\partial y} + \frac{\partial w}{\partial t}\frac{\partial t}{\partial y} = \frac{\partial w}{\partial s}(-2y) + \frac{\partial w}{\partial t}(2y).$$

Now

$$y\frac{\partial w}{\partial x} + x\frac{\partial w}{\partial y} = y\left(\frac{\partial w}{\partial s}(2x) + \frac{\partial w}{\partial t}(-2x)\right) + x\left(\frac{\partial w}{\partial s}(-2y) + \frac{\partial w}{\partial t}(2y)\right) = 0.$$

Ways to visualize the Chain Rule:

Suppose $\vec{r}: \mathbb{R} \to \mathbb{R}^3$, and $f: \mathbb{R}^3 \to \mathbb{R}$. You can visualize $\vec{r}(t)$ as the position at time t of a moving object, and f(x, y, z) as the temperature at point (x, y, z). Then the composition $(f \circ \vec{r})(t)$ represents the temperature of the moving object at time t (assuming the object acquires the temperature of its surroundings), and its derivative $(f \circ \vec{r})'(t)$ represents the rate of change of the object's temperature with respect to time.

If we write $\vec{r} = \langle x, y, z \rangle$ and w = f(x, y, z), then w denotes the object's temperature, and the Chain Rule can be written as

$$\frac{dw}{dt} = (f \circ \vec{r})'(t) = \nabla f(\vec{r}(t)) \cdot \vec{r}'(t) = \left\langle \frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}, \frac{\partial w}{\partial z} \right\rangle \cdot \left\langle \frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt} \right\rangle = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt} + \frac{\partial w}{\partial z} \frac{dz}{dt}$$

which gives us

$$dw = \frac{\partial w}{\partial x}\frac{dx}{dt}dt + \frac{\partial w}{\partial y}\frac{dy}{dt}dt + \frac{\partial w}{\partial z}\frac{dz}{dt}dt$$
$$\Delta w \approx \frac{\partial w}{\partial x}\frac{dx}{dt}\Delta t + \frac{\partial w}{\partial y}\frac{dy}{dt}\Delta t + \frac{\partial w}{\partial z}\frac{dz}{dt}\Delta t$$

We can think that a small change Δt in time produces a small change $\Delta x \approx \frac{dx}{dt} \Delta t$ in x, which in turn produces a small change of approximately $\frac{\partial w}{\partial x} \Delta x \approx \frac{\partial w}{\partial x} \frac{dx}{dt} \Delta t$ in w. The change Δt in t also produces changes Δy in y and Δz in z, and those changes also produce changes in w. The net change Δw is the sum of the three individual changes produced by the changes in x, y, and z.

If $\vec{r}: \mathbb{R} \to \mathbb{R}^2$, and $f: \mathbb{R}^2 \to \mathbb{R}$, we can think of $\vec{r}(t)$ as the projection on the *xy*-plane of the position of an object (crawling bug) moving on the graph z = f(x, y). Then the composition $(f \circ \vec{r})(t)$ represents the height (*z*-coordinate) of the moving object at time *t*, and its derivative $(f \circ \vec{r})'(t)$ represents the rate of change of the object's height with respect to time; that is, how fast its height is changing.

We can again think that changing t produces changes in both x and y, each of which contribute to change in z, and the net change in z is the sum of those two changes.

Example: We can identify points on the cone $x^2 + y^2 = z^2$, $z \ge 0$, using two coordinates, r and θ , by setting

$$x = r\cos(\theta)$$
 $y = r\sin(\theta)$ $z = r$ $0 \le \theta \le 2\pi$ $0 \le r$.

Define w on the cone by

$$w = xy - xz^2$$

Note that we can think of w as function of r and θ : $w = xy - xz^2$, where (x, y, z) is the point on the cone for which $(x, y) = (r \cos(\theta), r \sin(\theta))$.

Find $\frac{\partial w}{\partial r}$ at the point (-2, 0, 2).

At the point (x, y) = (-2, 0) we have

$$r = 2 \quad \theta = \pi \quad x = -2 \quad y = 0 \quad z = 2$$
$$\frac{\partial w}{\partial x} = y - z^2 = -4 \quad \frac{\partial w}{\partial y} = x = -2 \quad \frac{\partial w}{\partial z} = -2xz = 8$$
$$\frac{\partial x}{\partial r} = \cos(\theta) = -1 \quad \frac{\partial y}{\partial r} = \sin(\theta) = 0 \quad \frac{\partial z}{\partial r} = 1$$

We treat θ as a constant and differentiate with respect to r, using the chain rule:

$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial r} + \frac{\partial w}{\partial z}\frac{\partial z}{\partial r} = (-4)(-1) + (-2)(0) + (8)(1) = 12$$

At a general point, we have

$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial r} + \frac{\partial w}{\partial z}\frac{\partial z}{\partial r} = (y - z^2)(\cos(\theta)) + (x)(\sin(\theta)) + (-2xz)(1) = (r\sin(\theta) - r^2)(\cos(\theta)) + (r\cos(\theta))(\sin(\theta)) + (-2r^2\cos(\theta))(1) = 2r\sin(\theta)\cos(\theta) - 3r^2\cos(\theta).$$

What does this mean? We define w as a function of (r, θ) by looking at the point on the cone $(x, y, z) = (r \cos(\theta), r \sin(\theta), r)$, then computing $w = xy - xz^2$. We want to know, when (x, y) = (-2, 0), the rate of change of w with respect to r.

For example, suppose w denotes the temperature at a given point on the cone. Consider the ubiquitous bug crawling on the cone, with its shadow moving in the xy-plane. The bug's temperature is w. When the bug's shadow is where $(r, \theta) = (2, -\pi)$, and the bug moves so its shadow's new location is where $(r, \theta) = (2 + \Delta r, -\pi)$ (that is, θ remains constant and rchanges by Δr), the bug's temperature will have changed by

$$\Delta w \approx \frac{\partial w}{\partial r} \Delta r$$

Example: We can identify points on the cone $x^2 + y^2 = z^2$, $z \ge 0$, using two coordinates, r and θ , by setting

$$x = r\cos(\theta)$$
 $y = r\sin(\theta)$ $z = r$ $0 \le \theta \le 2\pi$ $0 \le r$.

Define w on the cone by

$$w = xy - xz^2.$$

Note that we can think of w as function of r and θ : $w = xy - xz^2$, where (x, y, z) is the point on the cone for which $(x, y) = (r \cos \theta, r \sin \theta)$. Find $\frac{\partial w}{\partial \theta}$ at the point (-2, 0, 2).

Example: A surface S has the equation z = f(x, y). At (x, y) = (1, 2) we have

$$z = 45$$
 $\frac{\partial z}{\partial x} = 2$ $\frac{\partial z}{\partial y} = 1$

A bug is crawling on the surface S, and a light shining directly down through S (which is transparent) casts the bug's shadow on the xy-plane; the position of the shadow is $\vec{r}(t)$. At time t_0 , the bug's shadow has position $\vec{r}(t_0) = \langle 1, 2 \rangle$ and velocity $\vec{r}'(t_0) = \langle 3, -1 \rangle$.

Find the rate of change of the bug's altitude with respect to time at the time t_0 .

Example:

Suppose that S is a level surface f(x, y, z) = k of a differentiable function f and $\vec{r}(t)$ is a regular parametrization of a path γ lying in S. Since the value of f equals k for all points on S, and all points $\vec{r}(t)$ are on S, we have

$$f(\vec{r}(t)) = k.$$

Start with this equation and differentiate both sides (using the chain rule for the left hand side) to show that

$$\nabla f(\vec{r}(t)) \perp \vec{r}'(t).$$

Since this is true for any path γ in S, we can conclude that $\nabla f(x, y, z)$ is normal to S at the point (x, y, z). Explain why.

That is, the gradient of f at a point is normal to the level surface (or level curve) of f containing that point.

Example: If $f(x, y) = 4x^2 - y^2$, then the hyperbola $4x^2 - y^2 = 3$ is a level curve of f, so it should be perpendicular to the gradient of f at every point. Verify that the hyperbola is perpendicular to the gradient of f at the point (1, 1) in the following way:

Use implicit differentiation to compute $\frac{dy}{dx}$ for the portion of the hyperbola containing (1,1), use the value of $\frac{dy}{dx}$ to find a vector \vec{T} tangent to the hyperbola at (1,1), and then verify that \vec{T} is perpendicular to $\nabla f(1,1)$.

Recall implicitly defined functions: An equation f(x, y, z) = 0 defining a surface S can be thought of as implicitly defining z as a function of x and y near a point on S. If we want to find $\frac{\partial z}{\partial x}$ at that point, we can treat y as a constant and z as a function of x, and differentiate the equation with respect to x:

$$\frac{\partial}{\partial x}(f(x, y, z)) = 0$$

$$\frac{\partial f}{\partial x}\underbrace{\frac{\partial x}{\partial x}}_{=1} + \frac{\partial f}{\partial y}\underbrace{\frac{\partial y}{\partial x}}_{=0} + \frac{\partial f}{\partial z}\underbrace{\frac{\partial z}{\partial x}}_{\text{unknown}} = 0$$

$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial z}\frac{\partial z}{\partial x} = 0$$

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial z}}$$

This is the implicit function theorem.

Example: Earlier, we looked at the surface

$$ax^2 + by^2 + cz^2 = d$$

and used implicit differentiation:

$$2ax + 2cz\frac{\partial z}{\partial x} = 0$$
$$\frac{\partial z}{\partial x} = -\frac{ax}{cz}.$$

Now we can use the implicit function theorem:

$$f(x, y, z) = ax^{2} + by^{2} + cz^{2} - d \qquad f(x, y, z) = 0$$
$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial z}} = -\frac{2ax}{2cz} = -\frac{ax}{cz}.$$

You do not have to know the implicit function theorem, but you may use it if you wish.

Proof of the Chain Rule:

If f is differentiable at (x_0, y_0) , we can write

$$f(x,y) = \underbrace{a(x-x_0) + b(y-y_0) + f(x_0,y_0)}_{\mathcal{P}(x,y) \text{ graph is tangent plane}} + \underbrace{E(x,y)}_{f(x,y)-\mathcal{P}(x,y)}$$

where

$$\lim_{(x,y)\to(x_0,y_0)} \frac{E(x,y)}{|\langle x-x_0,y-y_0\rangle|} = 0$$
$$a = \frac{\partial f}{\partial x}(x_0,y_0) \qquad b = \frac{\partial f}{\partial y}(x_0,y_0) \qquad \nabla f(x_0,y_0) = \langle a,b\rangle$$

If $\vec{r}(t_0) = (x_0, y_0)$ and \vec{r} is differentiable at t_0 , we can write $\vec{r}(t) = \langle x(t), y(t) \rangle$ and compute

$$\begin{aligned} \frac{d}{dt} \left(f(\vec{r}(t_0)) \right) &= \lim_{t \to t_0} \frac{f(\vec{r}(t)) - f(\vec{r}(t_0))}{t - t_0} = \lim_{t \to t_0} \frac{f(x(t), y(t)) - f(x_0, y_0)}{t - t_0} = \\ \lim_{t \to t_0} \frac{a(x(t) - x_0) + b(y(t) - y_0) + f(x_0, y_0) + E(x(t), y(t)) - f(x_0, y_0)}{t - t_0} = \\ \frac{\lim_{t \to t_0} \frac{a(x(t) - x(t_0)) + b(y(t) - y(t_0)) + E(x(t), y(t))}{t - t_0}}{t - t_0} = \\ a \lim_{t \to t_0} \frac{(x(t) - x(t_0))}{t - t_0} + b \lim_{t \to t_0} \frac{(y(t) - y(t_0))}{t - t_0} + \lim_{t \to t_0} \frac{E(x(t), y(t))}{t - t_0} = \\ ax'(t_0) + by'(t_0) + \lim_{t \to t_0} \frac{E(x(t), y(t))}{t - t_0} = \\ \langle a, b \rangle \cdot \langle x'(t_0), y'(t_0) \rangle + \lim_{t \to t_0} \frac{E(x(t), y(t))}{t - t_0} = \left[\nabla f(\vec{r}(t_0)) \cdot \vec{r}'(t_0) \right] + \lim_{t \to t_0} \frac{E(x(t), y(t))}{t - t_0} \end{aligned}$$

Now, assuming for simplicity that $\vec{r}'(t_0) \neq \vec{0}$, so that for t near t_0 we have $\vec{r}(t) \neq \vec{r}(t_0)$ and we can safely divide by $|\vec{r}(t) - \vec{r}(t_0)|$ (this assumption can be eliminated by a small trick),

$$\lim_{t \to t_0} \left| \frac{E(x(t), y(t))}{t - t_0} \right| = \lim_{t \to t_0} \left| \frac{E(x(t), y(t))}{|\vec{r}(t) - \vec{r}(t_0)|} \right| \left| \frac{|\vec{r}(t) - \vec{r}(t_0)|}{t - t_0} \right| = \\ \lim_{t \to t_0} \left| \frac{E(x(t), y(t))}{|\vec{r}(t) - \vec{r}(t_0)|} \right| |\vec{r}'(t_0)| = \\ \lim_{(x,y) \to (x_0, y_0)} \left| \frac{E(x, y)}{|\langle x, y \rangle - \langle x_0, y_0 \rangle|} \right| |\vec{r}'(t_0)| = 0(|\vec{r}'(t_0)|) = 0.$$

Therefore

$$\frac{d}{dt}\left(f(\vec{r}(t_0))\right) = \nabla f(\vec{r}(t_0)) \cdot \vec{r}'(t_0)$$