Math 11
Fall 2016

Section 1
Friday, September 30, 2016

First, some important points from the last class:
Definition: The function f : R? — R is differentiable at (x¢,yo) if there is a function
L(z,y) =ax+by+c

(where a, b, and ¢ are constants) such that the graphs of f and L are tangent at the point
(20, Yo, f(x0,yo)). This means that

L(Imyo) = f(z0,%)
and

= 0.
(l’ay)%(mo»yﬂ) \/($ — xo)Q —'— (y — y0)2

Theorem: If f : R? — R is differentiable at (xg, o), then the tangent plane at the point
(20, Yo, f(xo,yo)) is the graph of the function

L) = (G ann) ) (o= 20) + (5 o) ) = ) + Foo )

Note: When f is differentiable at (xo,yo), we can approximate f(x,y) near (zo,yo) by

f(z,y) = L(z,y).

This is called the linear approzimation or tangent approximation to f near (zg,yo). The
function L(z,y) is called the linearization of f at (xo,yo).

Definition: If f : R? — R is differentiable, the differential of f is

_of,  Of
df = g+ 5,y

Theorem: If the partial derivatives of f(x,y) are defined on a neighborhood of (¢, yo)
and continuous at (xg, o), then f is differentiable at (xq, yo).

Note: These definitions and theorems also hold for f : R® — R, and in general for
f:R* = R.



Warm-up Problems:
A surface S has the equation z = f(x,y). At (x,y) = (1,2) we have
ox dy
A bug is crawling on the surface S, and a light shining directly down through S (which is
transparent) casts the bug’s shadow on the xy-plane; the position of the shadow is 7(t). At
time to, the bug’s shadow has position 7(tg) = (1,2) and velocity 7'(to) = (3, —1).

1. Find an equation for the tangent plane to S at the point (1,2, 45).

z=45+ (2)(z — 1)+ (1)(y — 2).
2. Use the tangent approximation
(t) = 7(to) + (t — to)™ (to)

to approximate the shadow’s position at time ¢ty + At, where At is a very small change

in t.
dz dy
dt dt
= ~
(to+ At) = (1,2) + At (3, —1) = (1 +3At,2 - At) = ( 1+ (3) At, 2+ (—1)At ).
X
€z Y

3. Use the equation of the tangent plane to S to approximate the bug’s new z-coordinate.

245 +2x—1)+1(y—2) =45 +2((1 +3At) — 1)+ 1((2 — At) — 2) =

% £
45+ (2)(3)At + (D)(—D)AE =45+ (2) (3) At+ (1) (1) At
~ N ——
GH Az %; Ay
A
We can rewrite this:
F(ilto + At)) ~ 45+ (2,1) - (3,-1) ) At
0 of 7' (to)
=1(1,2), ==(1,2
(Fa Fa)




Definition: If f : R® — R, the gradient of f is the vector whose components are its

0 0 0
Vhe09) = (Ghte ), Sen). ).

If f is differentiable, we may also calll V f the total derivative of f.

partial derivatives:

Theorem (the chain rule): If 7(¢) is differentiable at ¢y, and f(z,y, z) is differentiable at

7(to), then
— (f(F(@X)) = V(1)) - 7(1).

Rephrasing this, if w is a function of z, y, z, and z, y, z are all functions of ¢, then

dw  [ow Ow OJw de dy dz 8wdx+8_w@+8wdz
N Or dt Oy dt Oz dt

At \dx Ay dz/ \dt dt’ dt
ow ow ow ow dx ow dy ow dz
Aw~ —Ar+ —Ay+ —Az~ ——A —At+ ——A
0z " T 9y RV T s T T T M T
2.2 . dw ™
Example If w = z°y*, © = sin(t), and y = cos(t), find r at t = 3
T Loy \/§ s 1
=g e=sn(z) = v=eos(3) =3
ow V3 ow 3 dx 1 d V3
—:2 2:— —:22—— _— = t—— —_— = — t:——
gr = gy v g oeesltl=g = s 2
dw _Owde  Owdy _ (V3) (1Y (3)( v3) V3
dt — Orxdt Oydt \ 4 2 4 2 ) 4
The chain rule in different settings:
t—x—w
do _ du ds
dt — dx dt

t— (z,y,2) > w
dw  OJwdz L ow ow dy ow dz
dt Oz dt dy dt ' 0z dt

(s,t) = (z,9,2) = w
ow 8w8x+8w8y+8_w%
ot Oz ot Oy ot 0z ot



Example: Suppose g(z,y) = f(2? — y? y*> — z%). Show that g satisfies the differential
equation

Introduce new variables s = 2% — 3? and t = y* — 2%, and write w = f(s,t). We want to
show that

8w L ow _0
Yo dy '
Using the Chain Rule,
8_w76_w@+8_w8t 8w( )+ 6w<2)
dr  0sdx | Ot oz Os ot
ow B owos Owdt Ow ow

Jw _OwOs  Owot 2+ 2o
oy 050y otoy 0s Wt )

v+ o =y (Goten) + G20 wa (G- + Gew ) =0



Ways to visualize the Chain Rule:

Suppose 7: R — R?, and f : R® — R. You can visualize 7(t) as the position at time ¢ of
a moving object, and f(x,y, z) as the temperature at point (z,y, z). Then the composition
(f o 7)(t) represents the temperature of the moving object at time ¢ (assuming the object
acquires the temperature of its surroundings), and its derivative (f o 7)'(t) represents the
rate of change of the object’s temperature with respect to time.

If we write ¥ = (z,y, z) and w = f(x,y, z), then w denotes the object’s temperature, and
the Chain Rule can be written as

d ow dw 0 dv dy d
= om0 =) P = (G 3 ) (G ) -

ow dx L ow 8wdy L ow ow dz
O dt dy dt 9z dt

which gives us

8w dz 8w dy ow dz

8w d:B 8w dy aw dz

x
We can think that a small change At in time produces a small change Az ~ — At in

dt
ow d
x, which in turn produces a small change of approximately —Aw ~ Z2%% At in w. The

Ox dt

change At in t also produces changes Ay in y and Az in z, and those changes also produce
changes in w. The net change Aw is the sum of the three individual changes produced by
the changes in x, y, and z.

If 7: R — R? and f: R? - R, we can think of 7(¢) as the projection on the zy-plane
of the position of an object (crawling bug) moving on the graph z = f(z,y). Then the
composition (f o 7)(t) represents the height (z-coordinate) of the moving object at time ¢,
and its derivative (f o 7)'(t) represents the rate of change of the object’s height with respect
to time; that is, how fast its height is changing.

We can again think that changing ¢ produces changes in both = and y, each of which
contribute to change in z, and the net change in z is the sum of those two changes.



Example: We can identify points on the cone 2 +y* = 22, z > 0, using two coordinates,
r and 6, by setting

r=rcos(f) y=rsin@) z=r 0<60<2r 0<r

Define w on the cone by

w=zy — x>

Note that we can think of w as function of r and 0: w = xy — x2?, where (z,y,2) is the
point on the cone for which (x,y) = (r cos(f), rsin(f)).

0
Find 8_w at the point (—2,0,2).
r

At the point (z,y) = (—2,0) we have

r=2 9—7'(' r=—2 Y= 2 =2
ow 9 ow ow
or YT~ —4 T 5, = w2=8
ox oy ) 0z
E—cos(@)——l E-sm(@)_ 5_1

We treat 6 as a constant and differentiate with respect to r, using the chain rule:

ow Odwdr Owdy Owdz B
B O P — () + (O + O =12

At a general point, we have

ow B 8w0_x 8w@ 8w%

T T et g = = 2)(cos(0)) + (x)(sin(d) + (~202)(1) =

(rsin(6) — r?)(cos(6)) + (rcos(6))(sin(0)) + (—2r* cos(h))(1) =
2r sin(6) cos(#) — 3r” cos(6).

What does this mean? We define w as a function of (r,6) by looking at the point on the
cone (z,y,2) = (rcos(),rsin(f), r), then computing w = zy — z2% We want to know, when
(,y) = (—2,0), the rate of change of w with respect to 7.

For example, suppose w denotes the temperature at a given point on the cone. Consider
the ubiquitous bug crawling on the cone, with its shadow moving in the xy-plane. The bug’s
temperature is w. When the bug’s shadow is where (r,0) = (2, —m), and the bug moves so
its shadow’s new location is where (r,6) = (2 + Ar, —7) (that is, # remains constant and r
changes by Ar), the bug’s temperature will have changed by

ow
Aw ~ —A
w o T



Example: We can identify points on the cone 2 +y* = 22, z > 0, using two coordinates,
r and 6, by setting

r=rcos(f) y=rsinf) z=r 0<0<2r 0<r.
Define w on the cone by
w=xy — 12>

Note that we can think of w as function of r and 6: w = xy — x2?, where (z,y, z) is the
point on the cone for which (z,y) = (rcos,rsinf).

Find ?3_? at the point (—2,0,2).



Example: A surface S has the equation z = f(z,y). At (z,y) = (1,2) we have

z =45 % =2 % =1
ox dy
A bug is crawling on the surface S, and a light shining directly down through S (which is
transparent) casts the bug’s shadow on the xy-plane; the position of the shadow is 7(¢). At
time t¢, the bug’s shadow has position 7(t) = (1,2) and velocity 7'(t) = (3, —1).

Find the rate of change of the bug’s altitude with respect to time at the time t,.



Example:

Suppose that S is a level surface f(x,y,z) = k of a differentiable function f and 7(t) is
a regular parametrization of a path v lying in S. Since the value of f equals k for all points
on S, and all points 7(t) are on S, we have

f(r(1) = k.

Start with this equation and differentiate both sides (using the chain rule for the left hand
side) to show that

Since this is true for any path v in S, we can conclude that V f(z,y, z) is normal to S at
the point (z,y, z). Explain why.

That is, the gradient of f at a point is normal to the level surface (or level curve) of f
containing that point.



Example: If f(z,y) = 42> — y?, then the hyperbola 422 — y* = 3 is a level curve of f,
so it should be perpendicular to the gradient of f at every point. Verify that the hyperbola
is perpendicular to the gradient of f at the point (1, 1) in the following way:

Use implicit differentiation to compute d—y for the portion of the hyperbola containing
x

d o
(1,1), use the value of d—y to find a vector T tangent to the hyperbola at (1,1), and then
x

verify that T is perpendicular to Vf(,1).
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Recall implictly defined functions: An equation f(x,y, 2) = 0 defining a surface S can be
thought of as implicitly defining z as a function of z and y near a point on S. If we want to

find . at that point, we can treat y as a constant and z as a function of x, and differentiate
x
the equation wtih respect to x:

2 () =0
of ox of oy of o

“r el 2=
Or Or Oy Or 0z O
=~ =~ =~
=1 =0 unknown
0 af o0
Jxr 0z 0x
0z %
—=—2
ox o
This is the implicit function theorem.
Example: Earlier, we looked at the surface
ar? +by? +c2* =d
and used implicit differentiation:
0
2ar + ZCZ—Z =0
Ox
dz  ax
or ¢z’
Now we can use the implicit function theorem:
f(z,y,2) = ax® + by* + c2* — d flz,y,2) =0
0z % _ 2ax  ax
or y 2z ez

You do not have to know the implicit function theorem, but you may use it if you wish.
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Proof of the Chain Rule:

If f is differentiable at (xg,yo), we can write

f(,y) = ale — o) + by —yo) + f(xo,50) + E(z,y)
~ ——

P(x,y) graph is tangent plane fxy)—P(z,y)

where 2

-0
(@)= (@o,w0) | (T — 0,y — Yo |

0 0
a = a—i(xo,yo) b= a—i(xo,yo) V f(xo,v0) = (a,b)

If 7(to) = (w0, yo) and 7 is differentiable at ¢y, we can write 7(t) = (x(t),y(t)) and compute

d f(r(@) — (k) f(x(), y(t)) = f (w0, 90)

3 (t))) = lim t— 1t = fim t— 1t -
- ale(t) = ) + () = ) + Flzo.m) + EG(0).9(0) ~ Fzom)
t—to t— to

afalt) = alto)) +b(y(t) = y(ta)) + Bla(t).u(0)

t—to t—to

_(z(t) — z(to)) _(y@) —y(to) . Elx(t),y(t))
=afim o T b lim S T lim = =
E(z(t),y(t))

"(t by’ (t lim ———————= =
ax'(to) + y(o)-i—tll% —

(.8 - (1), (1)) + im 2O G )|+ i 2090

t—to t—1to t—to t— 1y

Now, assuming for simplicity that /(o) # 0, so that for ¢ near t we have #(t) # 7(ty) and
we can safely divide by |7(¢) — 7(ty)| (this assumption can be eliminated by a small trick),

o w‘ L E(m(tw(t))‘ \m)—mo)\‘:
t—to t— 1o t—to ’F(t) _F(to)’ t—to
B0 |y
i 17(t) — 7(to)] |7 (to)|
E(z,y)

|7 (t0)| = O(|7"(to)]) = 0.

lim
(z,y)—(x0,y0)

| (x,y) - <$0,yo> |
Therefore

d A —‘ =/
at (f(7(to0))) = V f(7(to)) - 7' (o)
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