
Math 11
Fall 2016
Section 1

Friday, September 30, 2016

First, some important points from the last class:

Definition: The function f : R2 → R is differentiable at (x0, y0) if there is a function

L(x, y) = ax+ by + c

(where a, b, and c are constants) such that the graphs of f and L are tangent at the point
(x0, y0, f(x0, y0)). This means that

L(x0, y0) = f(x0, y0)

and

lim
(x,y)→(x0,y0)

f(x, y)− L(x, y)√
(x− x0)2 + (y − y0)2

= 0.

Theorem: If f : R2 → R is differentiable at (x0, y0), then the tangent plane at the point
(x0, y0, f(x0, y0)) is the graph of the function

L(x, y) =

(
∂f

∂x
(x0, y0)

)
(x− x0) +

(
∂f

∂xy
(x0, y0)

)
(y − y0) + f(x0, y0).

Note: When f is differentiable at (x0, y0), we can approximate f(x, y) near (x0, y0) by

f(x, y) ≈ L(x, y).

This is called the linear approximation or tangent approximation to f near (x0, y0). The
function L(x, y) is called the linearization of f at (x0, y0).

Definition: If f : R2 → R is differentiable, the differential of f is

df =
∂f

∂x
dx+

∂f

∂y
dy.

Theorem: If the partial derivatives of f(x, y) are defined on a neighborhood of (x0, y0)
and continuous at (x0, y0), then f is differentiable at (x0, y0).

Note: These definitions and theorems also hold for f : R3 → R, and in general for
f : Rn → R.
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Warm-up Problems:
A surface S has the equation z = f(x, y). At (x, y) = (1, 2) we have

z = 45
∂z

∂x
= 2

∂z

∂y
= 1

A bug is crawling on the surface S, and a light shining directly down through S (which is
transparent) casts the bug’s shadow on the xy-plane; the position of the shadow is ~r(t). At
time t0, the bug’s shadow has position ~r(t0) = 〈1, 2〉 and velocity ~r ′(t0) = 〈3,−1〉.

1. Find an equation for the tangent plane to S at the point (1, 2, 45).

z = 45 + (2)(x− 1) + (1)(y − 2).

2. Use the tangent approximation

~r(t) ≈ ~r(t0) + (t− t0)~r ′(t0)

to approximate the shadow’s position at time t0 + ∆t, where ∆t is a very small change
in t.

~r(t0 + ∆t) ≈ 〈1, 2〉+ ∆t 〈3,−1〉 = 〈1 + 3∆t, 2−∆t〉 =

〈
1 +

dx
dt︷︸︸︷

(3) ∆t︸ ︷︷ ︸
∆x

, 2 +

dy
dt︷︸︸︷

(−1) ∆t︸ ︷︷ ︸
∆y

〉
.

3. Use the equation of the tangent plane to S to approximate the bug’s new z-coordinate.

z ≈ 45 + 2(x− 1) + 1(y − 2) ≈ 45 + 2((1 + 3∆t)− 1) + 1((2−∆t)− 2) =

45 + (2)(3)∆t+ (1)(−1)∆t = 45 + (2)︸︷︷︸
∂z
∂x

dx
dt︷︸︸︷

(3) ∆t︸ ︷︷ ︸
∆x

+ (1)︸︷︷︸
∂z
∂y

dy
dt︷︸︸︷

(−1) ∆t︸ ︷︷ ︸
∆y︸ ︷︷ ︸

∆z

We can rewrite this:

f(~r(t0 + ∆t)) ≈ 45 +
(

〈2, 1〉︸ ︷︷ ︸〈
∂f

∂x
(1, 2),

∂f

∂y
(1, 2)

〉 · 〈3,−1〉︸ ︷︷ ︸
~r ′(t0)

)
∆t.

f(~r(t0 + ∆t)) ≈ f(~r(t0)) +

(〈
∂z

∂x
(~r(t0)),

∂z

∂y
(~r(t0))

〉
· ~r ′(t0)

)
∆t.

f(~r(t0 + ∆t))− f(~r(t0))

∆t
≈
(〈

∂z

∂x
(~r(t0)),

∂z

∂y
(~r(t0))

〉
· ~r ′(t0)

)
.
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Definition: If f : Rn → R, the gradient of f is the vector whose components are its
partial derivatives:

∇f(x, y, z) =

〈
∂f

∂x
(x, y, z),

∂f

∂y
(x, y, z),

∂f

∂z
(x, y, z)

〉
.

If f is differentiable, we may also calll ∇f the total derivative of f .

Theorem (the chain rule): If ~r(t) is differentiable at t0, and f(x, y, z) is differentiable at
~r(t0), then

d

dt
(f(~r(t))) = ∇f(~r(t)) · ~r ′(t).

Rephrasing this, if w is a function of x, y, z, and x, y, z are all functions of t, then

dw

dt
=

〈
∂w

∂x
,
∂w

∂y
,
∂w

∂z

〉
·
〈
dx

dt
,
dy

dt
,
dz

dt

〉
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt

∆w ≈ ∂w

∂x
∆x+

∂w

∂y
∆y +

∂w

∂z
∆z ≈ ∂w

∂x

dx

dt
∆t+

∂w

∂y

dy

dt
∆t+

∂w

∂z

dz

dt
∆t

Example If w = x2y2, x = sin(t), and y = cos(t), find
dw

dt
at t =

π

3
.

t =
π

3
x = sin

(π
3

)
=

√
3

2
y = cos

(π
3

)
=

1

2

∂w

∂x
= 2xy2 =

√
3

4

∂w

∂y
= 2x2y =

3

4

dx

dt
= cos(t) =

1

2

dy

dt
= − sin(t) = −

√
3

2

dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
=

(√
3

4

)(
1

2

)
+

(
3

4

)(
−
√

3

2

)
= −
√

3

4

The chain rule in different settings:

t→ x→ w
dw

dt
=
dw

dx

dx

dt

t→ (x, y, z)→ w

dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt

(s, t)→ (x, y, z)→ w

∂w

∂t
=
∂w

∂x

∂x

∂t
+
∂w

∂y

∂y

∂t
+
∂w

∂z

∂z

∂t
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Example: Suppose g(x, y) = f(x2 − y2, y2 − x2). Show that g satisfies the differential
equation

y
∂g

∂x
+ x

∂g

∂y
= 0.

Introduce new variables s = x2 − y2 and t = y2 − x2, and write w = f(s, t). We want to
show that

y
∂w

∂x
+ x

∂w

∂y
= 0.

Using the Chain Rule,

∂w

∂x
=
∂w

∂s

∂s

∂x
+
∂w

∂t

∂t

∂x
=
∂w

∂s
(2x) +

∂w

∂t
(−2x).

∂w

∂y
=
∂w

∂s

∂s

∂y
+
∂w

∂t

∂t

∂y
=
∂w

∂s
(−2y) +

∂w

∂t
(2y).

Now

y
∂w

∂x
+ x

∂w

∂y
= y

(
∂w

∂s
(2x) +

∂w

∂t
(−2x)

)
+ x

(
∂w

∂s
(−2y) +

∂w

∂t
(2y)

)
= 0.
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Ways to visualize the Chain Rule:

Suppose ~r : R→ R3, and f : R3 → R. You can visualize ~r(t) as the position at time t of
a moving object, and f(x, y, z) as the temperature at point (x, y, z). Then the composition
(f ◦ ~r)(t) represents the temperature of the moving object at time t (assuming the object
acquires the temperature of its surroundings), and its derivative (f ◦ ~r)′(t) represents the
rate of change of the object’s temperature with respect to time.

If we write ~r = 〈x, y, z〉 and w = f(x, y, z), then w denotes the object’s temperature, and
the Chain Rule can be written as

dw

dt
= (f ◦ ~r)′(t) = ∇f(~r(t)) · ~r ′(t) =

〈
∂w

∂x
,
∂w

∂y
,
∂w

∂z

〉
·
〈
dx

dt
,
dy

dt
,
dz

dt

〉
=

∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt

which gives us

dw =
∂w

∂x

dx

dt
dt+

∂w

∂y

dy

dt
dt+

∂w

∂z

dz

dt
dt

∆w ≈ ∂w

∂x

dx

dt
∆t+

∂w

∂y

dy

dt
∆t+

∂w

∂z

dz

dt
∆t

We can think that a small change ∆t in time produces a small change ∆x ≈ dx

dt
∆t in

x, which in turn produces a small change of approximately
∂w

∂x
∆x ≈ ∂w

∂x

dx

dt
∆t in w. The

change ∆t in t also produces changes ∆y in y and ∆z in z, and those changes also produce
changes in w. The net change ∆w is the sum of the three individual changes produced by
the changes in x, y, and z.

If ~r : R → R2, and f : R2 → R, we can think of ~r(t) as the projection on the xy-plane
of the position of an object (crawling bug) moving on the graph z = f(x, y). Then the
composition (f ◦ ~r)(t) represents the height (z-coordinate) of the moving object at time t,
and its derivative (f ◦ ~r)′(t) represents the rate of change of the object’s height with respect
to time; that is, how fast its height is changing.

We can again think that changing t produces changes in both x and y, each of which
contribute to change in z, and the net change in z is the sum of those two changes.
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Example: We can identify points on the cone x2 +y2 = z2, z ≥ 0, using two coordinates,
r and θ, by setting

x = r cos(θ) y = r sin(θ) z = r 0 ≤ θ ≤ 2π 0 ≤ r.

Define w on the cone by
w = xy − xz2.

Note that we can think of w as function of r and θ: w = xy − xz2, where (x, y, z) is the
point on the cone for which (x, y) = (r cos(θ), r sin(θ)).

Find
∂w

∂r
at the point (−2, 0, 2).

At the point (x, y) = (−2, 0) we have

r = 2 θ = π x = −2 y = 0 z = 2

∂w

∂x
= y − z2 = −4

∂w

∂y
= x = −2

∂w

∂z
= −2xz = 8

∂x

∂r
= cos(θ) = −1

∂y

∂r
= sin(θ) = 0

∂z

∂r
= 1

We treat θ as a constant and differentiate with respect to r, using the chain rule:

∂w

∂r
=
∂w

∂x

∂x

∂r
+
∂w

∂y

∂y

∂r
+
∂w

∂z

∂z

∂r
= (−4)(−1) + (−2)(0) + (8)(1) = 12

At a general point, we have

∂w

∂r
=
∂w

∂x

∂x

∂r
+
∂w

∂y

∂y

∂r
+
∂w

∂z

∂z

∂r
= (y − z2)(cos(θ)) + (x)(sin(θ)) + (−2xz)(1) =

(r sin(θ)− r2)(cos(θ)) + (r cos(θ))(sin(θ)) + (−2r2 cos(θ))(1) =

2r sin(θ) cos(θ)− 3r2 cos(θ).

What does this mean? We define w as a function of (r, θ) by looking at the point on the
cone (x, y, z) = (r cos(θ), r sin(θ), r), then computing w = xy−xz2. We want to know, when
(x, y) = (−2, 0), the rate of change of w with respect to r.

For example, suppose w denotes the temperature at a given point on the cone. Consider
the ubiquitous bug crawling on the cone, with its shadow moving in the xy-plane. The bug’s
temperature is w. When the bug’s shadow is where (r, θ) = (2,−π), and the bug moves so
its shadow’s new location is where (r, θ) = (2 + ∆r,−π) (that is, θ remains constant and r
changes by ∆r), the bug’s temperature will have changed by

∆w ≈ ∂w

∂r
∆r
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Example: We can identify points on the cone x2 +y2 = z2, z ≥ 0, using two coordinates,
r and θ, by setting

x = r cos(θ) y = r sin(θ) z = r 0 ≤ θ ≤ 2π 0 ≤ r.

Define w on the cone by
w = xy − xz2.

Note that we can think of w as function of r and θ: w = xy − xz2, where (x, y, z) is the
point on the cone for which (x, y) = (r cos θ, r sin θ).

Find
∂w

∂θ
at the point (−2, 0, 2).
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Example: A surface S has the equation z = f(x, y). At (x, y) = (1, 2) we have

z = 45
∂z

∂x
= 2

∂z

∂y
= 1

A bug is crawling on the surface S, and a light shining directly down through S (which is
transparent) casts the bug’s shadow on the xy-plane; the position of the shadow is ~r(t). At
time t0, the bug’s shadow has position ~r(t0) = 〈1, 2〉 and velocity ~r ′(t0) = 〈3,−1〉.

Find the rate of change of the bug’s altitude with respect to time at the time t0.
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Example:
Suppose that S is a level surface f(x, y, z) = k of a differentiable function f and ~r(t) is

a regular parametrization of a path γ lying in S. Since the value of f equals k for all points
on S, and all points ~r(t) are on S, we have

f(~r(t)) = k.

Start with this equation and differentiate both sides (using the chain rule for the left hand
side) to show that

∇f(~r(t)) ⊥ ~r ′(t).

Since this is true for any path γ in S, we can conclude that ∇f(x, y, z) is normal to S at
the point (x, y, z). Explain why.

That is, the gradient of f at a point is normal to the level surface (or level curve) of f
containing that point.
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Example: If f(x, y) = 4x2 − y2, then the hyperbola 4x2 − y2 = 3 is a level curve of f ,
so it should be perpendicular to the gradient of f at every point. Verify that the hyperbola
is perpendicular to the gradient of f at the point (1, 1) in the following way:

Use implicit differentiation to compute
dy

dx
for the portion of the hyperbola containing

(1, 1), use the value of
dy

dx
to find a vector ~T tangent to the hyperbola at (1, 1), and then

verify that ~T is perpendicular to ∇f(1, 1).
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Recall implictly defined functions: An equation f(x, y, z) = 0 defining a surface S can be
thought of as implicitly defining z as a function of x and y near a point on S. If we want to

find
∂z

∂x
at that point, we can treat y as a constant and z as a function of x, and differentiate

the equation wtih respect to x:
∂

∂x
(f(x, y, z)) = 0

∂f

∂x

∂x

∂x︸︷︷︸
=1

+
∂f

∂y

∂y

∂x︸︷︷︸
=0

+
∂f

∂z

∂z

∂x︸︷︷︸
unknown

= 0

∂f

∂x
+
∂f

∂z

∂z

∂x
= 0

∂z

∂x
= −

∂f
∂x
∂f
∂z

This is the implicit function theorem.

Example: Earlier, we looked at the surface

ax2 + by2 + cz2 = d

and used implicit differentiation:

2ax+ 2cz
∂z

∂x
= 0

∂z

∂x
= −ax

cz
.

Now we can use the implicit function theorem:

f(x, y, z) = ax2 + by2 + cz2 − d f(x, y, z) = 0

∂z

∂x
= −

∂f
∂x
∂f
∂z

= −2ax

2cz
= −ax

cz
.

You do not have to know the implicit function theorem, but you may use it if you wish.
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Proof of the Chain Rule:

If f is differentiable at (x0, y0), we can write

f(x, y) = a(x− x0) + b(y − y0) + f(x0, y0)︸ ︷︷ ︸
P(x,y) graph is tangent plane

+ E(x, y)︸ ︷︷ ︸
f(x,y)−P(x,y)

where

lim
(x,y)→(x0,y0)

E(x, y)

| 〈x− x0, y − y0〉 |
= 0

a =
∂f

∂x
(x0, y0) b =

∂f

∂y
(x0, y0) ∇f(x0, y0) = 〈a, b〉

If ~r(t0) = (x0, y0) and ~r is differentiable at t0, we can write ~r(t) = 〈x(t), y(t)〉 and compute

d

dt
(f(~r(t0))) = lim

t→t0

f(~r(t))− f(~r(t0))

t− t0
= lim

t→t0

f(x(t), y(t))− f(x0, y0)

t− t0
=

lim
t→t0

a(x(t)− x0) + b(y(t)− y0) + f(x0, y0) + E(x(t), y(t))− f(x0, y0)

t− t0
=

lim
t→t0

a(x(t)− x(t0)) + b(y(t)− y(t0)) + E(x(t), y(t))

t− t0

= a lim
t→t0

(x(t)− x(t0))

t− t0
+ b lim

t→t0

(y(t)− y(t0))

t− t0
+ lim

t→t0

E(x(t), y(t))

t− t0
=

ax′(t0) + by′(t0) + lim
t→t0

E(x(t), y(t))

t− t0
=

〈a, b〉 · 〈x′(t0), y′(t0)〉) + lim
t→t0

E(x(t), y(t))

t− t0
= ∇f(~r(t0)) · ~r ′(t0) + lim

t→t0

E(x(t), y(t))

t− t0
Now, assuming for simplicity that ~r ′(t0) 6= ~0, so that for t near t0 we have ~r(t) 6= ~r(t0) and
we can safely divide by |~r(t)− ~r(t0)| (this assumption can be eliminated by a small trick),

lim
t→t0

∣∣∣∣E(x(t), y(t))

t− t0

∣∣∣∣ = lim
t→t0

∣∣∣∣E(x(t), y(t))

|~r(t)− ~r(t0)|

∣∣∣∣ ∣∣∣∣ |~r(t)− ~r(t0)|
t− t0

∣∣∣∣ =

lim
t→t0

∣∣∣∣E(x(t), y(t))

|~r(t)− ~r(t0)|

∣∣∣∣ |~r ′(t0)| =

lim
(x,y)→(x0,y0)

∣∣∣∣ E(x, y)

| 〈x, y〉 − 〈x0, y0〉 |

∣∣∣∣ |~r ′(t0)| = 0(|~r ′(t0)|) = 0.

Therefore
d

dt
(f(~r(t0))) = ∇f(~r(t0)) · ~r ′(t0)
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