
Math 11
Fall 2016
Section 1

Wednesday, September 28, 2016

First, some important points from the last class:

Definition: The partial derivative of f(x, y) with respect to x at the point (x0, y0) is
the derivative of the function of x we get by setting y to have constant value y0:

∂f

∂x
(x0, y0) = fx(x0, y0) = Dxf(x0, y0) =

d

dx
(f(x, y0))

∣∣∣
x=x0

.

Geometrically, this is the slope (vertical rise over horizontal run, treating the z-axis as
vertical) of the tangent line to the graph of f at (x0, y0, f(x0, y0))) in the plane x = x0.

The second partial derivatives of f include

fxx = (fx)x =
∂

∂x

(
∂f

∂x

)
=

∂2f

∂x2

fxy = (fx)y =
∂

∂y

(
∂f

∂x

)
=

∂2f

∂y∂x
.

Theorem (Clairaut’s theorem): If suitable hypotheses hold, the corresponding mixed second
partial derivatives of a function are always equal. That is,

fxy = fyx fxz = fzx fyz = fzy
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Example: Find an equation for the tangent plane to the graph of the function

f(x, y) = x2y2

at the point (1, 3, 9).

The partial derivatives of f at that point are

∂f

∂x
(1, 3) = (2xy2)

∣∣∣
(x,y)=(1,3)

= 18

∂f

∂y
(1, 3) = (2x2y)

∣∣∣
(x,y)=(1,3)

= 6

Vectors in the direction of the lines tangent to the graph of f at that point in vertical planes:

x = 1 :

〈
0, 1,

∂f

∂y
(1, 3)

〉
= 〈0, 1, 6〉

y = 3 :

〈
1, 0,

∂f

∂x
(1, 3)

〉
= 〈1, 0, 18〉

Vector normal to both tangent lines:

〈0, 1, 6〉 × 〈1, 0, 18〉 = 〈18, 6,−1〉

Equation of plane containing both tangent lines (containing point (1, 3, 9) and normal to the
vector 〈18, 6,−1〉):

~n · (~r − ~r0) = 0

〈18, 6,−1〉 · 〈x− 1, y − 3, z − 9〉 = 0

18(x− 1) + 6(y − 3)− (z − 9) = 0

z = 18(x− 1) + 6(y − 3) + 9

z =

(
∂f

∂x
(1, 3)

)
(x− 1)︸ ︷︷ ︸

∆x

+

(
∂f

∂xy
(1, 3)

)
(y − 3)︸ ︷︷ ︸

∆y

+f(1, 3)

Theorem: If the graph of f has a tangent plane at the point (x0, y0, f(x0, y0)), its
equation is

z =

(
∂f

∂x
(x0, y0)

)
(x− x0) +

(
∂f

∂y
(x0, y0)

)
(y − y0) + f(x0, y0).
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Theorem: If the graph of f has a tangent plane at the point (x0, y0, f(x0, y0)), it is the
graph of the function

L(x, y) =

(
∂f

∂x
(x0, y0)

)
(x− x0) +

(
∂f

∂y
(x0, y0)

)
(y − y0) + f(x0, y0).

We can approximate f(x, y) near (x0, y0) by

f(x, y) ≈ L(x, y)

f(x0 + ∆x, y0 + ∆y) ≈
(
∂f

∂x
(x0, y0)

)
(∆x) +

(
∂f

∂y
(x0, y0)

)
(∆y) + f(x0, y0).

This is called the linear approximation or tangent approximation.

Definition: The function

L(x, y) =

(
∂f

∂x
(x0, y0)

)
(x− x0) +

(
∂f

∂y
(x0, y0)

)
(y − y0) + f(x0, y0)

is called the linearization of f at (x0, y0).

Warning: The fact that f has partial derivatives at a point is not enough to guarantee
that its graph has a tangent plane there. Here are two pictures of the graph of the function

f(x, y) =

{
2xy√
x2+y2

(x, y) 6= (0, 0);

0 (x, y) = (0, 0).
The red lines are the intersections of the graph of f with

the planes x = 0 and y = 0. Both are horizontal, so
∂f

∂x
(0, 0) =

∂f

∂y
(0, 0) = 0. The yellow V

is the intersection of the graph of f with the plane x = y. It is pointed at the origin, and
does not have a tangent line there, so the graph of f has no tangent plane at (0, 0).
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We do, however, have this useful theorem:

Theorem: If the partial derivatives of f(x, y) are defined near (x0, y0) and continuous
at (x0, y0), then f is differentiable at (x0, y0).

Example: Show that
f(x, y, z) = xyz

is differentiable at the point (1, 2, 1), and then use the linear approximation to f to approx-
imate the product of the three numbers 1.01, 1.98, and .99.

The partial derivatives of f are

∂f

∂x
(x, y, z) = yz

∂f

∂y
(x, y, z) = xz

∂f

∂z
(x, y, z) = xy.

They are defined and continuous everywhere, so by the theorem, f is differentiable every-
where.

For small values of ∆x, ∆y, and ∆z, we can say

f(1 + ∆x, 2 + ∆y, 1 + ∆z) ≈(
∂f

∂x
(1, 2, 1)

)
∆x +

(
∂f

∂y
(1, 2, 1)

)
∆y +

(
∂f

∂z
(1, 2, 1)

)
∆z + f(1, 2, 1) =

2∆x + ∆y + 2∆z + 2.

At the point (1.01, 1.98, .99), we have ∆x = .01, ∆y = −.02 and ∆z = −.01, so

(1.01)(1.98)(.99) = f(1.01, 1.98, .99) ≈ 2(.01) + (−.02) + 2(−.01) + 2 = 1.98

(The actual product, per calculator, is 1.979802. Our error is .000198, which is about .01%.
This seems pretty good, since ∆x, ∆y, and ∆z were about 1% of our original numbers.)

We can say:

f(x0 + ∆x, y0 + ∆y)− f(x0, y0) ≈
(
∂f

∂x
(x0, y0)

)
(∆x) +

(
∂f

∂xy
(x0, y0)

)
(∆y);

∆z ≈ ∂z

∂x
∆x +

∂z

∂y
∆y.

Definition: The differential is

df =
∂f

∂x
dx +

∂f

∂y
dy, or dz =

∂z

∂x
dx +

∂z

∂y
dy.
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Example: Find an equation for the tangent plane to the sphere

x2 + y2 + z2 = 169

at the point (3, 4, 12).

We can consider z to be a function of x and y on the top half of the sphere, so z = f(x, y).
The graph of the linearization of f at (3, 4) will be tangent to the graph of f . We can find
∂z

∂x
by implicit differentiation, treating y as a constant, z as a function of x, and x as the

independent variable:
x2 + y2 + z2 = 169

2x + 0 + 2z
∂z

∂x
= 0

∂z

∂x
= −x

z

In the same way, we get
∂z

∂y
= −y

z

and at (x, y) = (3, 4)
∂f

∂x
=

∂z

∂x
= − 3

12

∂f

∂y
=

∂z

∂y
= − 4

12

Our linearization is

L(x, y) =
∂f

∂x
(3, 4)(x− 3) +

∂f

∂y
(3, 4)(y − 4) + f(3, 4) =

(
−3

12

)
(x− 3) +

(
−4

12

)
(y − 4) + 12 = −x

4
− y

3
+

169

12

so we can write our tangent plane as

z = −x

4
− y

3
+

169

12

3x + 4y + 12z = 169.
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Recall from last time we made the following definition:
Definition: The function f(x, y) is differentiable at (x0, y0) if there is a function

L(x, y) = ax + by + c

(where a, b, and c are constants) whose graph is tangent to the graph of f at the point
(x0, y0, f(x0, y0)) = (x0, y0, z0).

We now know what the function L must be:

L(x, y) =

(
∂f

∂x

)
(x0, y0)(x− x0) +

(
∂f

∂y

)
(x0, y0)(y − y0) + f(x0, y0).

It remains to say what it means for the graphs of L and f to be tangent at (x0, y0, z0).
The first condition is obvious; the point (x0, y0, z0) must be on both graphs. That is, we

must have z0 = f(x0, y0) = L(x0, y0).
The second condition is more complex. Intuitively, we want the two graphs to have the

same slopes at that point. But we saw that a graph can have different slopes in different
directions. So, again intuitively, we want the graphs to have the same slope in every direction.

graph of f

end of secant line to graph of f

graph of L

end of line segment in graph of L

other end of line segments

(x0, y0) (x, y)

(Vertical slice of graphs of f (green) and L (red).)

We want the slope of a secant line to the graph of f to be close to the slope of the
corresponding line segment in the graph of L, as long as (x, y) is close to (x0, y0). We would
like to say that in the limit as (x, y) → (x0, y0) the slopes are the same — except that in
almost all cases neither slope approaches a limit. (For example, as (x, y)→ (x0, y0) from the
positive x-direction, the slope of the secant line approaches fx(x0, y0), and as (x, y)→ (x0, y0)
from the positive y-direction, the slope of the secant line approaches fy(x0, y0).)

However, the following small change works: We require that the limit of the difference
of the slopes as (x, y)→ (x0, y0) is zero.
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height f(x, y)

height L(x, y)

height f(x0, y0) = L(x0, y0)

(x0, y0) (x, y)

From the picture, the horizontal “run” of each line segment is the distance between (x0, y0)
and (x, y), or

√
(x− x0)2 + (y − y0)2. The vertical “rise” of the secant line to the graph of

f is f(x, y)− f(x0, y0), and that of the line segment in the graph of L is L(x, y)−L(x0, y0).
Their respective slopes are

slopef−secant =
f(x, y)− f(x0, y0)√
(x− x0)2 + (y − y0)2

slopeL−line =
L(x, y)− L(x0, y0)√
(x− x0)2 + (y − y0)2

,

and using the fact that f(x0, y0) = L(x0, y0), the difference of those slopes is

(f(x, y)− f(x0, y0))− (L(x, y)− L(x0, y0))√
(x− x0)2 + (y − y0)2

=
f(x, y)− L(x, y)√

(x− x0)2 + (y − y0)2
.

The graphs are tangent if that difference approaches 0 as (x, y) → (x0, y0). Putting this
together:

Definition: The function f(x, y) is differentiable at (x0, y0) if there is a function

L(x, y) = ax + by + c

(where a, b, and c are constants) such that L(x0, y0) = f(x0, y0) and

lim
(x,y)→(x0,y0)

(
f(x, y)− L(x, y)√

(x− x0)2 + (y − y0)2

)
= 0.

Warning: This is not the same as the definition in the textbook. Both definitions
say that the difference f(x, y) = L(x, y) not only approaches zero as (x, y) → (x0, y0), it
approaches zero very quickly. You can use either one. (See the mathematical challenge
problem at the end.)
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Example: Let f(x, y) = xy.

Show that f is differentiable everywhere.

Find an equation for the plane that is tangent to the graph of the function f(x, y) = xy
at the point (1, 1, 1).

Use the linearization of f at (x, y) = (1, 1) to approximate the value of the product
(1.02)(.97).
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Example: Use implicit differentiation to find the partial derivatives of z with respect to
x and y on the ellipsoid

x2

9
+

y2

16
+

z2

25
= 3

at the point (3, 4, 5). Then find an equation for the tangent plane to the ellipsoid at that
point.

Use the linear approximation to approximate the z-coordinate of the point on the ellipsoid
whose x- and y-coordinates are 3.02 and 4.01.

9



Example: Show that any function of the form

f(x, y) = aebx sin(by),

where a and b are constants, satisfies Laplace’s equation

∂2f

∂x2
+

∂2f

∂y2
= 0

Example: Check directly that Clairaut’s Theorem holds of any function of the form

f(x, y) = g(x)h(y),

where g and h are differentiable functions.
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Example: Let f(x, y) =

{
2xy√
x2+y2

(x, y) 6= (0, 0);

0 (x, y) = (0, 0).
. This is the example shown above of

a function that has partial derivatives but is not differentiable.

Show that f is continuous at (0, 0).

Show that
∂f

∂x
(0, 0) = 0. Because of the piecewise definition of f , you should do this

using the limit definition of partial derivative,

∂f

∂x
(x0, y0) = lim

h→0

f(x0 + h, y0)− f(x0, y0)

h
.

(By symmetry, we also have
∂f

∂y
(0, 0) = 0.)

Compute
∂f

∂x
(x, y) for (x, y) 6= (0, 0), and show that

∂f

∂x
is not continuous at (0, 0).
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Mathematical Challenge: Show that if f is differentiable at (x0, y0) according to the
textbook definition, then it is differentiable at (x0, y0) according to our definition.
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