Math 11
Fall 2016
Section 1
Wednesday, September 28, 2016

First, some important points from the last class:
Definition: The partial derivative of $f(x, y)$ with respect to x at the point $\left(x_{0}, y_{0}\right)$ is the derivative of the function of x we get by setting y to have constant value y_{0} :

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)=D_{x} f\left(x_{0}, y_{0}\right)=\left.\frac{d}{d x}\left(f\left(x, y_{0}\right)\right)\right|_{x=x_{0}}
$$

Geometrically, this is the slope (vertical rise over horizontal run, treating the z-axis as vertical) of the tangent line to the graph of f at $\left.\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)\right)$ in the plane $x=x_{0}$.

The second partial derivatives of f include

$$
\begin{aligned}
f_{x x} & =\left(f_{x}\right)_{x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}} \\
f_{x y} & =\left(f_{x}\right)_{y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x}
\end{aligned}
$$

Theorem (Clairaut's theorem): If suitable hypotheses hold, the corresponding mixed second partial derivatives of a function are always equal. That is,

$$
f_{x y}=f_{y x} \quad f_{x z}=f_{z x} \quad f_{y z}=f_{z y}
$$

Example: Find an equation for the tangent plane to the graph of the function

$$
f(x, y)=x^{2} y^{2}
$$

at the point $(1,3,9)$.
The partial derivatives of f at that point are

$$
\begin{gathered}
\frac{\partial f}{\partial x}(1,3)=\left.\left(2 x y^{2}\right)\right|_{(x, y)=(1,3)}=18 \\
\frac{\partial f}{\partial y}(1,3)=\left.\left(2 x^{2} y\right)\right|_{(x, y)=(1,3)}=6
\end{gathered}
$$

Vectors in the direction of the lines tangent to the graph of f at that point in vertical planes:

$$
\begin{array}{ll}
x=1: & \left\langle 0,1, \frac{\partial f}{\partial y}(1,3)\right\rangle=\langle 0,1,6\rangle \\
y=3: & \left\langle 1,0, \frac{\partial f}{\partial x}(1,3)\right\rangle=\langle 1,0,18\rangle
\end{array}
$$

Vector normal to both tangent lines:

$$
\langle 0,1,6\rangle \times\langle 1,0,18\rangle=\langle 18,6,-1\rangle
$$

Equation of plane containing both tangent lines (containing point $(1,3,9)$ and normal to the vector $\langle 18,6,-1\rangle)$:

$$
\begin{gathered}
\vec{n} \cdot\left(\vec{r}-\vec{r}_{0}\right)=0 \\
\langle 18,6,-1\rangle \cdot\langle x-1, y-3, z-9\rangle=0 \\
18(x-1)+6(y-3)-(z-9)=0 \\
z=18(x-1)+6(y-3)+9 \\
z=\left(\frac{\partial f}{\partial x}(1,3)\right) \underbrace{(x-1)}_{\Delta x}+\left(\frac{\partial f}{\partial x y}(1,3)\right) \underbrace{(y-3)}_{\Delta y}+f(1,3)
\end{gathered}
$$

Theorem: If the graph of f has a tangent plane at the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$, its equation is

$$
z=\left(\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\right)\left(x-x_{0}\right)+\left(\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right) .
$$

Theorem: If the graph of f has a tangent plane at the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$, it is the graph of the function

$$
L(x, y)=\left(\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\right)\left(x-x_{0}\right)+\left(\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right) .
$$

We can approximate $f(x, y)$ near $\left(x_{0}, y_{0}\right)$ by

$$
\begin{gathered}
f(x, y) \approx L(x, y) \\
f\left(x_{0}+\Delta x, y_{0}+\Delta y\right) \approx\left(\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\right)(\Delta x)+\left(\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right)(\Delta y)+f\left(x_{0}, y_{0}\right)
\end{gathered}
$$

This is called the linear approximation or tangent approximation.
Definition: The function

$$
L(x, y)=\left(\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\right)\left(x-x_{0}\right)+\left(\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)
$$

is called the linearization of f at $\left(x_{0}, y_{0}\right)$.
Warning: The fact that f has partial derivatives at a point is not enough to guarantee that its graph has a tangent plane there. Here are two pictures of the graph of the function

$f(x, y)=\left\{\begin{array}{ll}\frac{2 x y}{\sqrt{x^{2}+y^{2}}} & (x, y) \neq(0,0) ; \\ 0 & (x, y)=(0,0) .\end{array}\right.$ The red lines are the intersections of the graph of f with the planes $x=0$ and $y=0$. Both are horizontal, so $\frac{\partial f}{\partial x}(0,0)=\frac{\partial f}{\partial y}(0,0)=0$. The yellow V is the intersection of the graph of f with the plane $x=y$. It is pointed at the origin, and does not have a tangent line there, so the graph of f has no tangent plane at $(0,0)$.

We do, however, have this useful theorem:
Theorem: If the partial derivatives of $f(x, y)$ are defined near $\left(x_{0}, y_{0}\right)$ and continuous at $\left(x_{0}, y_{0}\right)$, then f is differentiable at $\left(x_{0}, y_{0}\right)$.

Example: Show that

$$
f(x, y, z)=x y z
$$

is differentiable at the point $(1,2,1)$, and then use the linear approximation to f to approximate the product of the three numbers $1.01,1.98$, and .99 .

The partial derivatives of f are

$$
\frac{\partial f}{\partial x}(x, y, z)=y z \quad \frac{\partial f}{\partial y}(x, y, z)=x z \quad \frac{\partial f}{\partial z}(x, y, z)=x y
$$

They are defined and continuous everywhere, so by the theorem, f is differentiable everywhere.

For small values of $\Delta x, \Delta y$, and Δz, we can say

$$
\begin{gathered}
f(1+\Delta x, 2+\Delta y, 1+\Delta z) \approx \\
\left(\frac{\partial f}{\partial x}(1,2,1)\right) \Delta x+\left(\frac{\partial f}{\partial y}(1,2,1)\right) \Delta y+\left(\frac{\partial f}{\partial z}(1,2,1)\right) \Delta z+f(1,2,1)= \\
2 \Delta x+\Delta y+2 \Delta z+2
\end{gathered}
$$

At the point $(1.01,1.98, .99)$, we have $\Delta x=.01, \Delta y=-.02$ and $\Delta z=-.01$, so

$$
(1.01)(1.98)(.99)=f(1.01,1.98, .99) \approx 2(.01)+(-.02)+2(-.01)+2=1.98
$$

(The actual product, per calculator, is 1.979802 . Our error is .000198 , which is about $.01 \%$. This seems pretty good, since $\Delta x, \Delta y$, and Δz were about 1% of our original numbers.)

We can say:

$$
\begin{aligned}
f\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-f\left(x_{0}, y_{0}\right) & \approx\left(\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\right)(\Delta x)+\left(\frac{\partial f}{\partial x y}\left(x_{0}, y_{0}\right)\right)(\Delta y) \\
\Delta z & \approx \frac{\partial z}{\partial x} \Delta x+\frac{\partial z}{\partial y} \Delta y
\end{aligned}
$$

Definition: The differential is

$$
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y, \quad \text { or } \quad d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y .
$$

Example: Find an equation for the tangent plane to the sphere

$$
x^{2}+y^{2}+z^{2}=169
$$

at the point $(3,4,12)$.
We can consider z to be a function of x and y on the top half of the sphere, so $z=f(x, y)$. The graph of the linearization of f at $(3,4)$ will be tangent to the graph of f. We can find $\frac{\partial z}{\partial x}$ by implicit differentiation, treating y as a constant, z as a function of x, and x as the independent variable:

$$
\begin{gathered}
x^{2}+y^{2}+z^{2}=169 \\
2 x+0+2 z \frac{\partial z}{\partial x}=0 \\
\frac{\partial z}{\partial x}=-\frac{x}{z}
\end{gathered}
$$

In the same way, we get

$$
\frac{\partial z}{\partial y}=-\frac{y}{z}
$$

and at $(x, y)=(3,4)$

$$
\frac{\partial f}{\partial x}=\frac{\partial z}{\partial x}=-\frac{3}{12} \quad \frac{\partial f}{\partial y}=\frac{\partial z}{\partial y}=-\frac{4}{12}
$$

Our linearization is

$$
\begin{aligned}
& L(x, y)=\frac{\partial f}{\partial x}(3,4)(x-3)+\frac{\partial f}{\partial y}(3,4)(y-4)+f(3,4)= \\
& \left(\frac{-3}{12}\right)(x-3)+\left(\frac{-4}{12}\right)(y-4)+12=-\frac{x}{4}-\frac{y}{3}+\frac{169}{12}
\end{aligned}
$$

so we can write our tangent plane as

$$
\begin{gathered}
z=-\frac{x}{4}-\frac{y}{3}+\frac{169}{12} \\
3 x+4 y+12 z=169
\end{gathered}
$$

Recall from last time we made the following definition:
Definition: The function $f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$ if there is a function

$$
L(x, y)=a x+b y+c
$$

(where a, b, and c are constants) whose graph is tangent to the graph of f at the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)=\left(x_{0}, y_{0}, z_{0}\right)$.

We now know what the function L must be:

$$
L(x, y)=\left(\frac{\partial f}{\partial x}\right)\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\left(\frac{\partial f}{\partial y}\right)\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right) .
$$

It remains to say what it means for the graphs of L and f to be tangent at (x_{0}, y_{0}, z_{0}).
The first condition is obvious; the point $\left(x_{0}, y_{0}, z_{0}\right)$ must be on both graphs. That is, we must have $z_{0}=f\left(x_{0}, y_{0}\right)=L\left(x_{0}, y_{0}\right)$.

The second condition is more complex. Intuitively, we want the two graphs to have the same slopes at that point. But we saw that a graph can have different slopes in different directions. So, again intuitively, we want the graphs to have the same slope in every direction.

(Vertical slice of graphs of f (green) and L (red).)
We want the slope of a secant line to the graph of f to be close to the slope of the corresponding line segment in the graph of L, as long as (x, y) is close to $\left(x_{0}, y_{0}\right)$. We would like to say that in the limit as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$ the slopes are the same - except that in almost all cases neither slope approaches a limit. (For example, as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$ from the positive x-direction, the slope of the secant line approaches $f_{x}\left(x_{0}, y_{0}\right)$, and as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$ from the positive y-direction, the slope of the secant line approaches $f_{y}\left(x_{0}, y_{0}\right)$.)

However, the following small change works: We require that the limit of the difference of the slopes as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$ is zero.

From the picture, the horizontal "run" of each line segment is the distance between $\left(x_{0}, y_{0}\right)$ and (x, y), or $\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}$. The vertical "rise" of the secant line to the graph of f is $f(x, y)-f\left(x_{0}, y_{0}\right)$, and that of the line segment in the graph of L is $L(x, y)-L\left(x_{0}, y_{0}\right)$. Their respective slopes are

$$
\text { slope }_{f-\text { secant }}=\frac{f(x, y)-f\left(x_{0}, y_{0}\right)}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}} \quad \text { slope }_{L-\text { line }}=\frac{L(x, y)-L\left(x_{0}, y_{0}\right)}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}},
$$

and using the fact that $f\left(x_{0}, y_{0}\right)=L\left(x_{0}, y_{0}\right)$, the difference of those slopes is

$$
\frac{\left(f(x, y)-f\left(x_{0}, y_{0}\right)\right)-\left(L(x, y)-L\left(x_{0}, y_{0}\right)\right)}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}}=\frac{f(x, y)-L(x, y)}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}} .
$$

The graphs are tangent if that difference approaches 0 as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$. Putting this together:

Definition: The function $f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$ if there is a function

$$
L(x, y)=a x+b y+c
$$

(where a, b, and c are constants) such that $L\left(x_{0}, y_{0}\right)=f\left(x_{0}, y_{0}\right)$ and

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}\left(\frac{f(x, y)-L(x, y)}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}}\right)=0
$$

Warning: This is not the same as the definition in the textbook. Both definitions say that the difference $f(x, y)=L(x, y)$ not only approaches zero as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$, it approaches zero very quickly. You can use either one. (See the mathematical challenge problem at the end.)

Example: Let $f(x, y)=x y$.
Show that f is differentiable everywhere.

Find an equation for the plane that is tangent to the graph of the function $f(x, y)=x y$ at the point $(1,1,1)$.

Use the linearization of f at $(x, y)=(1,1)$ to approximate the value of the product (1.02)(.97).

Example: Use implicit differentiation to find the partial derivatives of z with respect to x and y on the ellipsoid

$$
\frac{x^{2}}{9}+\frac{y^{2}}{16}+\frac{z^{2}}{25}=3
$$

at the point $(3,4,5)$. Then find an equation for the tangent plane to the ellipsoid at that point.

Use the linear approximation to approximate the z-coordinate of the point on the ellipsoid whose x - and y-coordinates are 3.02 and 4.01.

Example: Show that any function of the form

$$
f(x, y)=a e^{b x} \sin (b y)
$$

where a and b are constants, satisfies Laplace's equation

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0
$$

Example: Check directly that Clairaut's Theorem holds of any function of the form

$$
f(x, y)=g(x) h(y),
$$

where g and h are differentiable functions.

Example: Let $f(x, y)=\left\{\begin{array}{ll}\frac{2 x y}{\sqrt{x^{2}+y^{2}}} & (x, y) \neq(0,0) ; \\ 0 & (x, y)=(0,0) .\end{array}\right.$. This is the example shown above of a function that has partial derivatives but is not differentiable.

Show that f is continuous at $(0,0)$.

Show that $\frac{\partial f}{\partial x}(0,0)=0$. Because of the piecewise definition of f, you should do this using the limit definition of partial derivative,

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

(By symmetry, we also have $\frac{\partial f}{\partial y}(0,0)=0$.)

Compute $\frac{\partial f}{\partial x}(x, y)$ for $(x, y) \neq(0,0)$, and show that $\frac{\partial f}{\partial x}$ is not continuous at $(0,0)$.

Mathematical Challenge: Show that if f is differentiable at $\left(x_{0}, y_{0}\right)$ according to the textbook definition, then it is differentiable at $\left(x_{0}, y_{0}\right)$ according to our definition.

