
Math 11
Fall 2016
Section 1

Friday, November 11, 2016

First, some important points from the last class:

Theorem (Stokes’ Theorem): If S is an oriented piecewise-smooth surface, and ∂S, the
positively-oriented boundary of S (counterclockwise around S as viewed from the top of a
unit normal vector ~n), is a simple, closed, piecewise smooth curve, and F is a vector field
whose components have continuous partial derivatives on some open region containing S,
then ∫∫

S

(∇× F ) · d~S =

∫
∂S

F · d~r.

Stokes’s Theorem is one multivariable version of the Fundamental Theorem of Calculus.
It says that the integral of the curl (rotational tendency) of F over a surface S equals the
line integral (circulation) of F around the boundary of S.

We can use Stokes’ Theorem to simplify the evaluation of integrals in several ways:

by evaluating

∫∫
S

(∇× F ) · d~S instead of

∫
∂S

F · d~r, when this is easier;

by evaluating

∫
∂S

F · d~r instead of

∫∫
S

(∇× F ) · d~S, when this is easier;

by evaluating

∫∫
S1

(∇× F ) · d~S instead of

∫∫
S

(∇× F ) · d~S, when this is easier and the two

surfaces have the same boundary;

and in other ways.
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Definition: In R3, the solid region E is Type I if it is given by

u1(x, y) ≤ z ≤ u2(x, y) (x, y) ∈ D

where u1 and u2 are continuous functions and D is a Type I or Type II region in the plane.
Type II and Type III are defined similarly.

E is simple if it is Type I, Type II, and Type III.

Example: The region inside a sphere is simple. The region between two spheres centered
at the origin is not simple, but it can be divided into eight simple regions, one in each octant.

Theorem (Divergence Theorem): If E is a simple solid region or can be divided into
finitely many simple solid regions, ∂E is the positively-oriented boundary of E (with ~n
pointing outward from E), and F is a vector field whose components have continuous partial
derivatives on some open region containing S, then∫∫

S

F · d~S =

∫∫∫
E

∇ · F dV.

The Divergence Theorem (or Gauss’s Theorem) is one multivariable version of the Fun-
damental Theorem of Calculus. It says that the integral of the divergence (expansionary
tendency) of F over a solid region E equals the surface integral (rate of flow) of F across
the boundary of E.

Example: Find the flux of the vector field F (x, y, z) = 〈−y, x, z〉 outward through the
unit sphere.

The unit sphere S is the boundary of the solid unit ball E, so by the Divergence Theorem,∫∫
S

F · d~S =

∫∫∫
E

∇ · F dV =

∫∫∫
E

1 dV = volume(E) =
4π

3
.
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Example: (the same example continued)

We could have computed the flux of the vector field F (x, y, z) = 〈−y, x, z〉 outward
through the unit sphere directly, by parametrizing the unit sphere. If we use cylindrical
coordinates, in which the unit sphere has the equation r2 + z2 = 1, we can set v = θ and
u = z to get

〈x, y, z〉 = ~r(u, v) =
〈√

1− u2 cos v,
√

1− u2 sin v, u
〉

− 1 ≤ u ≤ 1 0 ≤ v ≤ 2π

~ru × ~rv =

〈
−u√
1− u2

cos v,
−u√
1− u2

sin v, 1

〉
×
〈
−
√

1− u2 sin v,
√

1− u2 cos v, 0
〉

=〈
−
√

1− u2 cos v,−
√

1− u2 sin v,−u
〉

= 〈−x,−y,−z〉 ,

which has the wrong orientation. To account for this, we change the sign:∫∫
S

〈−y, x, z〉 · d~S =

∫ 2π

0

∫ 1

−1

〈
−
√

1− u2 sin v,
√

1− u2 cos v, u
〉
·
〈√

1− u2 cos v,
√

1− u2 sin v, u
〉
du dv =∫ 2π

0

∫ 1

−1
u2 du dv =

∫ 2π

0

2

3
dv =

4π

3
.

We could also have noticed that on the unit sphere, the vector 〈x, y, z〉 is a unit vector
pointing away from the origin, and therefore normal to the sphere. That is, 〈x, y, z〉 = ~n.
Therefore we could write∫∫

S

F · d~S =

∫∫
S

F · ~n dS =

∫∫
S

〈−y, x, z〉 · 〈x, y, z〉 dS =

∫∫
S

z2 dS.

Evaluating this integral by parametrizing the sphere in cylindrical coordinates gives pretty
much the same integral we just evaluated.

3



Example: Find the flux of the vector field F (x, y, z) = 〈xey + sin z,−ey − 9z2y, 3z3 + yz〉
across the surface S, the top half of the unit sphere (z ≥ 0), oriented so ~n points upward.

Since the divergence of F is much simpler than F itself,

∇ · F = (ey) + (−ey − 9z2) + (9z2 + y) = y,

we would like to find a way to use the Divergence Theorem. We can do this by combining S
with another surface to form the boundary of a solid region. Let S1 be the unit disc in the
xy-plane, oriented with ~n pointing downward. Then S+S1 is the boundary of a solid region
E, which is the portion of the unit ball above the xy plane. By the Divergence Theorem,∫∫∫

E

∇ · F dV =

∫∫
S

F · d~S +

∫∫
S1

F · d~S.

Evaluating the two integrals that are not the one we are trying to avoid evaluating directly:∫∫∫
E

∇ · F dV =

∫∫∫
E

y dV = 0 (by symmetry);

∫∫
S1

F ·d~S =

∫∫
S1

F ·~n dS =

∫∫
S1

〈
xey + sin(0),−ey − 9(0)2y, 3(0)3 + (y)(0)

〉
·〈0, 0,−1〉 dS =∫∫

S1

〈xey,−ey, 0〉 · 〈0, 0,−1〉 dS =

∫∫
S1

0 dS = 0.

Going back to our equation:∫∫∫
E

∇ · F dV︸ ︷︷ ︸
0

=

∫∫
S

F · d~S +

∫∫
S1

F · d~S︸ ︷︷ ︸
0

;

∫∫
S

F · d~S = 0.
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Example: S is the portion of the plane x + y + z = 1 in the first octant, oriented so ~n
points upward. Find the flux of the vector field 〈x, y, z〉 through S.

Via the Divergence Theorem: Let E be the corner of the first octant cut off by that
plane. Then the boundary of E consists of S, and surfaces S1, S2 and S3 contained in the
coordinate planes. The Divergence Theorem tells us∫∫∫

E

∇ · F dV =

∫∫
∂E

F · d~S =

∫∫
S

F · d~S +

∫∫
S1

F · d~S +

∫∫
S2

F · d~S +

∫∫
S3

F · d~S.

If S1 lies in the xy plane z = 0, on S1 we have F = 〈x, y, z〉 = 〈x, y, 0〉 and ~n = 〈0, 0,−1〉, so∫∫
S1

F · ~S =

∫∫
S1

F · ~n dS =

∫∫
S1

〈x, y, 0〉 · ~n 〈0, 0,−1〉 dS = 0.

By the same reasoning, ∫∫
S2

F · ~S =

∫∫
S3

F · ~S = 0.

Now we have∫∫
S

F · d~S =

∫∫∫
E

∇ · F dV =

∫∫∫
E

3 dV =

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0

3 dz dy dx =

3

∫ 1

0

∫ 1−x

0

1− x− y dy dx = 3

∫ 1

0

(
(1− x)y − y2

2

) ∣∣∣∣∣
y=1−x

y=0

dx =
3

2

∫ 1

0

(1− x)2 dx =

3

2

(
−(1− x)3

3

) ∣∣∣∣∣
x=1

x=0

=
1

2
.

Directly: Parametrize S via

~r(u, v) = 〈u, v, 1− u− v〉 0 ≤ u ≤ 1 0 ≤ v ≤ 1− u;

~ru × ~rv = 〈1, 0,−1〉 × 〈0, 1,−1〉 = 〈1, 1, 1〉 .

This has the correct orientation.∫∫
S

F · d~S =

∫ 1

0

∫ 1−u

0

〈u, v, 1− u− v〉 · 〈1, 1, 1〉 dv du =

∫ 1

0

∫ 1−u

0

1 dv du =

∫ 1

0

(1− u) du =
1

2
.
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Example: The electric or gravitational field produced by a point charge or mass at point
P is directed directly toward or away from P , and its magnitude is inversely proportional
to the square of the distance from P . If we denote the distance from P by d, and let k be a

suitable constant of proportionality (possibly negative), we can say F =
k

d2
~u, where ~u is a

unit vector pointing directly away from P . (k is a constant multiple of the amount of charge
or mass at P , depending on physical constants and the units of measurement.)

If S is a sphere of radius a centered at P , with outward pointing normal, then we can
evaluate the flux of F outward across S: The unit normal vector ~n points directly away from

P , so we can write F =
k

d2
~n. On this sphere, d = a, so F =

k

a2
~n. This gives∫∫

S

F · ~n dS =

∫∫
S

(
k

a2
~n

)
· ~n dS =

∫∫
S

k

a2
dS =

k

a2
area(S) =

k

a2
(4πa2) = 4πk.

Notice that this answer is the same no matter what value we choose for a.

We can check that ∇ · F = 0, except at P where F is undefined. This lets us compute
the flux of F outward across the boundary S of any solid region E, as long as P does not
lie on S: If P is not in E, then the divergence of F throughout E is zero, so the flux of F
across S is zero.

If P is in E, we can let S1 be a very small sphere centered at P , with inward pointing
normal, and let E1 be the part of E that is not enclosed by S1. Because S1 has inward-
pointing normal, ∫∫

S1

F · ~S = −4πk.

The boundary of E1 is S + S1, so by the Divergence Theorem,∫∫
S

F · d~S +

∫∫
S1

F · d~S =

∫∫∫
E1

∇ · F dV = 0;

∫∫
S

F · d~S = −
∫∫

S1

F · d~S = 4πk.

That is, if the field F is produced by a point mass or charge, then the flux of F across S
is a constant C = 4πk times the amount of mass or charge inside S.

The same thing holds even if the field is produced by multiple point masses or charges,
since we just add the individual fields together.
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The same thing also holds if the field is produced by some continuous distribution of
charge or mass. (We can think of dividing an object into many tiny pieces, treating each as
a point mass or charge, and taking a limit as the size of the pieces approaches zero.) In the
case of charge, this Gauss’s Law: If F is an electric field produced by a charge distribution,
then the flux of F outward across the boundary S of a three-dimensional region E is a
constant C times the total charge on E.

By the Divergence Theorem, the flux is also the integral over E of the divergence ∇ · F .
If we look at a small enough region so ∇ · F is essentially constant, this is ∇ · F times the
volume of the region. Assuming the region is small enough so charge density is essentially
constant, we can say

C(charge density)(volume) = C( total charge) = C

∫∫
S

F · d~S ≈ C(∇ · F )volume

That is, the divergence ∇ · F (times the constant C) gives us charge density:

Summary:

If F is an electric field produced by a charge distribution, then ∇ · F is a constant C
times the charge density at a point, the total charge on a solid region E is the integral over

E of the charge density function
∇ · F
C

, and the flux of F outward through the boundary S

of E is ∫∫
S

F · d~S =

∫∫∫
E

∇ · F dV = C

∫∫
E

∇ · F
C

dV =

C

∫∫
E

charge density dV = C(total charge on E) = C(total charge inside S).
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Integrals of scalar functions:

Over an interval on the real line, a two-dimensional region in the plane or a three-
dimensional region in space: ∫ b

a

f(x) dx.∫∫
D

f(x, y) dA =

∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx.

∫∫∫
E

f(x, y, z) dV =

∫ b

a

∫ g2(x)

g1(x)

∫ h2(x,y)

h1(x,y)

f(x, y, z) dz dy dx.

Along a curve in two- or three-dimensional space:∫
γ

f(x, y) ds =

∫ b

a

f(~r(t)) |~r ′(t)| dt.

∫
γ

f(x, y, z) ds =

∫ b

a

f(~r(t)) |~r ′(t)| dt.

Over a surface in three-dimensional space:∫∫
S

f(x, y, z) dS =

∫∫
D

f(~r(u, v)) |~ru × ~rv| dA.

For parametrized curves and surfaces, |~r ′(t)| and |~ru × ~rv| are stretching factors, going
from length or area in the domain to length or area in the curve or surface.

Intuitively, the integral of f over some region is a way of multiplying the value of f
times the size (length, area, volume) of the region, when the value of f is not constant. The
integral is, in fact, the product of the average value of f on the region and the size of the
region.

Integrate 1 to get the size (length, area, volume) of the region of integration.

Integrate a mass [charge. . . ] density function to get total mass [charge. . . ].

To find the average value of f on the region of integration, divide the integral of f by
the size of the region.

Some of these integrals also have interpretations as area under a curve, or volume under
a surface.
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Integrals of vector functions:

Integrate the tangential component along a curve in the plane (F = 〈P,Q〉) or a curve
in space (F = 〈P,Q,R〉):∫

γ

F · d~r =

∫
γ

F · ~T ds =

∫ b

a

F (~r(t)) · ~r ′(t) dt =

∫
γ

P dx+Qdy.

∫
γ

F · d~r =

∫
γ

F · ~T ds =

∫ b

a

F (~r(t)) · ~r ′(t) dt =

∫
γ

P dx+Qdy +Rdz.

If F is a force, this is the work done by F on an object moving along γ.

Integrate the normal component across a curve in the plane (F = 〈P,Q〉) or a surface in
space (F = 〈P,Q,R〉): ∫

γ

F · ~n ds =

∫
γ

P dy −Qdx.∫∫
S

F · d~S =

∫∫
S

F · ~n dS =

∫∫
D

F (~r(u, v))× (~ru × ~rv) du dv.

If F is a fluid flow field, this is the rate of flow of F across the curve or through the surface.

Intuitively, again, these integrals are a way of multiplying the tangential component of
F or the normal component of F times the size (length, area, volume) of the region, when
this component of F is not constant.
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Example: Evaluate

∫∫
∂E

F · d~S, where F (x, y, z) = 〈yz, x2, xz〉 and E is each of the

following regions:

1. x2 + y2 ≤ z ≤ 1;

2. x2 + y2 ≤ z ≤ 1, x ≥ 0;

3. x2 + y2 ≤ z ≤ 1, x ≤ 0.

Try to do as little actual computation as possible.
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Example: Show that if E is a region to which the Divergence Theorem applies, then
the volume of E is

1

3

∫∫
∂E

〈x, y, z〉 · d~S.

Use a computation from earlier in these notes to find the volume of the corner of the first
octant cut off by the plane x+ y + z = 1.

Express the volume of the region above the cone z = a
√
x2 + y2 and inside the sphere

x2 + y2 + z2 = b2, where a and b are positive constants, using a surface integral. Evaluate
this surface integral, using geometric reasoning as much as possible.
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Example Suppose that f(x, y, z) is a function satisfying Laplace’s equation,

∇ · ∇f = 0.

Show that if E is a solid region to which the Divergence Theorem applies, then∫∫
∂E

∇f · d~S = 0.

If f is a temperature distribution function, then the heat flow is given by F = −k∇f ,
where k is some positive constant. This is because, physically, heat flows from areas of high
temperature to areas of low temperature, and the rate of heat transfer is proportional to the
temperature differential. Use the fact you proved above to explain why solutions to Laplace’s
equation represent stable (not changing over time) temperature distributions.

Suggestion: Suppose the temperature at point P is falling over time. If S is a tiny sphere
centered at P , would you expect the rate of heat flow outward through S to be positive,
negative, or zero?
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