Math 11
Fall 2016
Section 1
Wednesday, November 9, 2016

First, some important points from the last class:
If S is parametrized by $\vec{r}(u, v)$ for (u, v) in the domain D, f is a scalar function, and F is a vector field:

$$
\begin{gathered}
\iint_{S} f d S=\iint_{D} f(\vec{r}(u, v)) \underbrace{\left|\vec{r}_{u} \times \vec{r}_{v}\right| d u d v}_{d S} \\
\iint_{S} F \cdot \vec{n} d S=\iint_{S} F \cdot d \vec{S}=\iint_{D} F(\vec{r}(u, v))\left(\vec{r}_{u} \times \vec{r}_{v}\right) d u d v
\end{gathered}
$$

$\iint_{S} 1 d S$ is the surface area of S.
If f represents the mass density of the surface at a point (say in grams per square meter), then $\iint_{S} f d S$ is the total mass of the surface.

The average value of f on S is $\frac{1}{\operatorname{area}(S)} \iint_{S} f d S$.
If F is a fluid flow field, then the surface integral $\iint_{S} F \cdot \vec{n} d S$ represents the rate of flow through the surface S in the direction given by \vec{n}.

If F is an electric field, then the surface integral $\iint_{S} F \cdot \vec{n} d S$ represents the electric flux through S.

You can imagine an infinitely small piece of the surface S, which is the image under \vec{r} of an infinitely small rectangle of dimensions $d u \times d v$ in the $u v$ plane:

Theorem (Stokes' Theorem): If S is an oriented piecewise-smooth surface, and ∂S, the positively-oriented boundary of S (counterclockwise around S as viewed from the top of a unit normal vector \vec{n}), is a simple, closed, piecewise smooth curve, and F is a vector field whose components have continuous partial derivatives on some open region containing S, then

$$
\iint_{S}(\nabla \times F) \cdot d \vec{S}=\int_{\partial S} F \cdot d \vec{r} .
$$

Example: If S is the surface $x^{2}+y^{2}+3 z^{2}=1, z \geq 0$, oriented with \vec{n} pointing upward, and $F(x, y, z)=\left\langle y,-x, z x^{3} y^{2}\right\rangle$, evaluate

$$
\iint_{S}(\nabla \times F) \cdot d \vec{S}
$$

The boundary of this surface is the unit circle γ in the $x y$ plane, oriented counterclockwise as viewed from above. We can parametrize γ by $\vec{r}(t)=\langle\cos t, \sin t, 0\rangle, 0 \leq t \leq 2 \pi$, so $d \vec{r}=\langle-\sin t, \cos t, 0\rangle$. Then, by Stokes' Theorem,

$$
\iint_{S}(\nabla \times F) \cdot d \vec{S}=\int_{\gamma} F \cdot d \vec{r}=\int_{0}^{2 \pi}\langle\sin t,-\cos t, 0\rangle \cdot\langle-\sin t, \cos t, 0\rangle d t=\int_{0}^{2 \pi}-1 d t=-2 \pi
$$

Example: If $F(x, y, z)=\left\langle x^{2}, 2 x y+x, z\right\rangle$ and γ is the unit circle in the $x y$ plane, oriented counterclockwise as seen from above, find $\int_{\gamma} F \cdot d \vec{r}$.

If S is the unit disc in the $x y$-plane, oriented with unit normal vector pointing upward, then $\gamma=\partial S$, and by Stokes' Theorem we have

$$
\int_{\gamma} F \cdot d \vec{r}=\iint_{S}(\nabla \times F) \cdot d \vec{S}=\iint_{S}\langle 0,0,2 y+1\rangle \cdot d \vec{S}
$$

We can parametrize S by

$$
\vec{r}(u, v)=\langle u, v, 0\rangle \quad u^{2}+v^{2} \leq 1 \quad \vec{r}_{u} \times \vec{r}_{v}=\langle 1,0,0\rangle \times\langle 0,1,0\rangle=\langle 0,0,1\rangle .
$$

This is the correct orientation. (If it were not, we could interchange u and v in the parametrization, or just multiply our answer by -1 .) Then

$$
\begin{gathered}
d \vec{S}=\vec{r}_{u} \times \vec{r}_{v} d u d v=\langle 0,0,1\rangle d u d v \\
\iint_{S}(\nabla \times F) \cdot d \vec{S}=\iint_{u^{2}+v^{2} \leq 1}\langle 0,0,2 v+1\rangle \cdot\langle 0,0,1\rangle d u d v=\iint_{u^{2}+v^{2} \leq 1} 2 v+1 d u d v .
\end{gathered}
$$

By symmetry we have

$$
\begin{gathered}
\iint_{u^{2}+v^{2} \leq 1} 2 v d u d v=0 \\
\iint_{u^{2}+v^{2} \leq 1} 1 d u d v=\left(\text { area of region } u^{2}+v^{2} \leq 1\right)=\pi
\end{gathered}
$$

Therefore

$$
\int_{\gamma} F \cdot d \vec{r}=\iint_{S}(\nabla \times F) \cdot d \vec{S}=\iint_{u^{2}+v^{2} \leq 1} 2 v+1 d u d v=\pi
$$

We could also do this without parametrizing S : Since S is in the $x y$ plane, oriented with upward pointing normal, we have $\vec{n}=\langle 0,0,1\rangle$, and

$$
\begin{gathered}
\iint_{S}(\nabla \times F) \cdot d \vec{S}=\iint_{S}\langle 0,0,2 y+1\rangle \cdot \vec{n} d S=\iint_{S}\langle 0,0,2 y+1\rangle \cdot\langle 0,0,1\rangle d S= \\
\iint_{S} 2 y+1 d S=\underbrace{\iint_{S} 2 y d S}_{0 \text { by symmetry }}+\iint_{S} 1 d S=0+\operatorname{area}(S)=\pi
\end{gathered}
$$

Example: Suppose that F is a vector field on \mathbb{R}^{3} whose components have continuous partial derivatives everywhere, and when $z=0$ we have

$$
(\nabla \times F)(x, y, 0)=\langle 0,0,3\rangle .
$$

Let S be the top half of the unit sphere, oriented with \vec{n} pointing up. Find

$$
\iint_{S}(\nabla \times F) \cdot d \vec{S}
$$

The boundary of S is γ, the unit circle in the $x y$-plane oriented counterclockwise as viewed from above. By Stokes' Theorem, we have

$$
\iint_{S}(\nabla \times F) \cdot d \vec{S}=\int_{\gamma} F \cdot d \vec{r} .
$$

Let D be the unit disc in the $x y$-plane, oriented with \vec{n} pointing up. Then γ is also the boundary of D, and by Stokes' Theorem, we have

$$
\int_{\gamma} F \cdot d \vec{r}=\iint_{D}(\nabla \times F) \cdot d \vec{S}
$$

On D, we have $\nabla \times F=\langle 0,0,3\rangle$ and $\vec{n}=\langle 0,0,1\rangle$, so

$$
\iint_{D}(\nabla \times F) \cdot d \vec{S}=\iint_{D}(\nabla \times F) \cdot \vec{n} d S=\iint_{D}\langle 0,0,3\rangle \cdot\langle 0,0,1\rangle d S=\iint_{D} 3 d S=3 \pi .
$$

Putting this all together,

$$
\iint_{S}(\nabla \times F) \cdot d \vec{S}=\int_{\gamma} F \cdot d \vec{r}=\iint_{D}(\nabla \times F) \cdot d \vec{S}=3 \pi
$$

Example: Evaluate $\int_{\gamma} F \cdot d \vec{r}$ where $F(x, y, z)=\langle y z, x z, x y\rangle$ and γ is the portion of the circle $x^{2}+z^{2}=1, y=1$ above the $x y$ plane, oriented from $(1,1,0)$ to $(-1,1,0)$.

In the plane $y=1$:

Using Stokes' Theorem: Let ψ be the line segment from $(-1,1,0)$ to $(1,1,0)$.
Then $\gamma+\psi$ is the boundary of D, the half-disc $x^{2}+z^{2} \leq 1, z \geq 0, y=1$, oriented appropriately. (In the picture, \vec{n} should be pointing at us, which gives $\vec{n}=\langle 0,-1,0\rangle$.) By Stokes's Theorem

$$
\int_{\gamma} F \cdot d \vec{r}+\int_{\psi} F \cdot d \vec{r}=\iint_{D}(\nabla \times F) \cdot d \vec{S} .
$$

We can compute $\nabla \times F=\langle 0,0,0\rangle$, so

$$
\iint_{D}(\nabla \times F) \cdot d \vec{S}=\iint_{D}\langle 0,0,0\rangle \cdot d \vec{S}=0 .
$$

On ψ, we have $z=0$, so $F=\langle 0,0, x y\rangle$. Also, on ψ we have $d \vec{r}=\vec{T} d s$ and $\vec{T}=\langle 1,0,0\rangle$, so

$$
\int_{\psi} F \cdot d \vec{r}=\int_{\psi} F \cdot \vec{T} d s=\int_{\psi}\langle 0,0, x y\rangle \cdot\langle 1,0,0\rangle d s=0 .
$$

Therefore, we have

$$
\begin{gathered}
\int_{\gamma} F \cdot d \vec{r}+0=0 \\
\int_{\gamma} F \cdot d \vec{r}=0
\end{gathered}
$$

Example continued with some other methods:
Evaluate $\int_{\gamma} F \cdot d \vec{r}$ where $F(x, y, z)=\langle y z, x z, x y\rangle$ and γ is the portion of the circle $x^{2}+z^{2}=1, y=1$ above the $x y$ plane, oriented from $(1,1,0)$ to $(-1,1,0)$.

Using the Fundamental Theorem of Line Integrals: The fact that $\nabla \times F=\langle 0,0,0\rangle$ on all of \mathbb{R}^{3} tells us that F is conservative. If we look for a potential function for F we will discover that $F=\nabla f$ where $f(x, y, z)=x y z$. Therefore

$$
\int_{\gamma} F \cdot d \vec{r}=\int_{\gamma} \nabla f \cdot d \vec{r}=f(-1,1,0)-f(1,1,0)=0 .
$$

Directly: Parametrize γ by $\vec{r}(t)=\langle\cos t, 1, \sin t\rangle$ for $0 \leq t \leq \pi$. Then

$$
\begin{gathered}
\int_{\gamma}\langle y z, x z, x y\rangle \cdot d \vec{r}=\int_{0}^{\pi}\langle\sin t, \cos t \sin t, \cos t\rangle \cdot\langle-\sin t, 0 \cos t\rangle d t=\int_{0}^{\pi}\left(\cos ^{2} t-\sin ^{2} t\right) d t= \\
\int_{0}^{\pi}\left(\frac{1+\cos (2 t)}{2}-\frac{1-\cos (2 t)}{2}\right) d t=\int_{0}^{\pi} \cos (2 t) d t=\left.\frac{\sin (2 t)}{2}\right|_{t=0} ^{t=\pi}=0
\end{gathered}
$$

Example: S is the surface parametrized by $\vec{r}(u, v)=\langle u \cos v, u \sin v, v\rangle, 0 \leq u \leq 1$, $0 \leq v \leq \frac{\pi}{2}$, oriented so \vec{n} points in the direction of $\vec{r}_{u} \times \vec{r}_{v}$, and γ is the positively oriented boundary of S.

Determine which way the unit vector \vec{n} points, and draw arrows on the picture to indicate the orientation of γ.

If $F(x, y, z)=\left\langle z, x^{2}, y\right\rangle$, find

$$
\int_{\gamma} F \cdot d \vec{r}
$$

in two ways, by directly computing the line integral, and by using Stokes' Theorem.

Example: Use Stokes's Theorem to find $\iint_{S}(\nabla \times F) d \vec{S}$ where S is the portion of the cone $z=1-\sqrt{x^{2}+y^{2}}$ in the first octant, oriented so \vec{n} points away from the z-axis, and $F(x, y, z)=\left\langle-y+(x+z) \cos x, x-z y^{3}, e^{x y}\right\rangle$.

Example: Suppose that F is a vector field whose components have continuous partial derivatives, and S is a sphere with outward-pointing normal. Use Stokes' Theorem to show that

$$
\iint_{S}(\nabla \times F) \cdot d \vec{S}=0
$$

Challenge: Suppose that F is a fluid flow field that varies over time, so that $F(x, y, z, t)$ is the velocity of fluid flow at point (x, y, z) and time t. If S is an oriented surface, how would you use integrals to find how much fluid flows through S between times $t=a$ and $t=b$?

