
Math 11
Fall 2016
Section 1

Wednesday, November 9, 2016

First, some important points from the last class:

If S is parametrized by ~r(u, v) for (u, v) in the domain D, f is a scalar function, and F
is a vector field: ∫∫

S

f dS =

∫∫
D

f(~r(u, v)) |~ru × ~rv| du dv︸ ︷︷ ︸
dS

;

∫∫
S

F · ~n dS =

∫∫
S

F · d~S =

∫∫
D

F (~r(u, v))(~ru × ~rv) du dv.

∫∫
S

1 dS is the surface area of S.

If f represents the mass density of the surface at a point (say in grams per square meter),

then

∫∫
S

f dS is the total mass of the surface.

The average value of f on S is
1

area(S)

∫∫
S

f dS.

If F is a fluid flow field, then the surface integral

∫∫
S

F · ~n dS represents the rate of flow

through the surface S in the direction given by ~n.

If F is an electric field, then the surface integral

∫∫
S

F · ~n dS represents the electric flux

through S.

You can imagine an infinitely small piece of the surface S, which is the image under ~r of
an infinitely small rectangle of dimensions du× dv in the uv plane:

parallelogram of area |~ru × ~rv| du dv = dS

~ru du

~rv dv

d~S = (~ru × ~rv) du dv = ~n dS
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Theorem (Stokes’ Theorem): If S is an oriented piecewise-smooth surface, and ∂S, the
positively-oriented boundary of S (counterclockwise around S as viewed from the top of a
unit normal vector ~n), is a simple, closed, piecewise smooth curve, and F is a vector field
whose components have continuous partial derivatives on some open region containing S,
then ∫∫

S

(∇× F ) · d~S =

∫
∂S

F · d~r.

Example: If S is the surface x2 + y2 + 3z2 = 1, z ≥ 0, oriented with ~n pointing upward,
and F (x, y, z) = 〈y,−x, zx3y2〉, evaluate∫∫

S

(∇× F ) · d~S.

The boundary of this surface is the unit circle γ in the xy plane, oriented counterclockwise
as viewed from above. We can parametrize γ by ~r(t) = 〈cos t, sin t, 0〉, 0 ≤ t ≤ 2π, so
d~r = 〈− sin t, cos t, 0〉. Then, by Stokes’ Theorem,∫∫

S

(∇×F ) ·d~S =

∫
γ

F ·d~r =

∫ 2π

0

〈sin t,− cos t, 0〉 · 〈− sin t, cos t, 0〉 dt =

∫ 2π

0

−1 dt = −2π.
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Example: If F (x, y, z) = 〈x2, 2xy + x, z〉 and γ is the unit circle in the xy plane, oriented

counterclockwise as seen from above, find

∫
γ

F · d~r.

If S is the unit disc in the xy-plane, oriented with unit normal vector pointing upward,
then γ = ∂S, and by Stokes’ Theorem we have∫

γ

F · d~r =

∫∫
S

(∇× F ) · d~S =

∫∫
S

〈0, 0, 2y + 1〉 · d~S.

We can parametrize S by

~r(u, v) = 〈u, v, 0〉 u2 + v2 ≤ 1 ~ru × ~rv = 〈1, 0, 0〉 × 〈0, 1, 0〉 = 〈0, 0, 1〉 .

This is the correct orientation. (If it were not, we could interchange u and v in the
parametrization, or just multiply our answer by −1.) Then

d~S = ~ru × ~rv du dv = 〈0, 0, 1〉 du dv∫∫
S

(∇× F ) · d~S =

∫∫
u2+v2≤1

〈0, 0, 2v + 1〉 · 〈0, 0, 1〉 du dv =

∫∫
u2+v2≤1

2v + 1 du dv.

By symmetry we have ∫∫
u2+v2≤1

2v du dv = 0.∫∫
u2+v2≤1

1 du dv = (area of region u2 + v2 ≤ 1) = π.

Therefore ∫
γ

F · d~r =

∫∫
S

(∇× F ) · d~S =

∫∫
u2+v2≤1

2v + 1 du dv = π.

We could also do this without parametrizing S: Since S is in the xy plane, oriented with
upward pointing normal, we have ~n = 〈0, 0, 1〉, and∫∫

S

(∇× F ) · d~S =

∫∫
S

〈0, 0, 2y + 1〉 · ~n dS =

∫∫
S

〈0, 0, 2y + 1〉 · 〈0, 0, 1〉 dS =

∫∫
S

2y + 1 dS =

∫∫
S

2y dS︸ ︷︷ ︸
0 by symmetry

+

∫∫
S

1 dS = 0 + area(S) = π.
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Example: Suppose that F is a vector field on R3 whose components have continuous
partial derivatives everywhere, and when z = 0 we have

(∇× F )(x, y, 0) = 〈0, 0, 3〉 .

Let S be the top half of the unit sphere, oriented with ~n pointing up. Find∫∫
S

(∇× F ) · d~S.

The boundary of S is γ, the unit circle in the xy-plane oriented counterclockwise as
viewed from above. By Stokes’ Theorem, we have∫∫

S

(∇× F ) · d~S =

∫
γ

F · d~r.

Let D be the unit disc in the xy-plane, oriented with ~n pointing up. Then γ is also the
boundary of D, and by Stokes’ Theorem, we have∫

γ

F · d~r =

∫∫
D

(∇× F ) · d~S.

On D, we have ∇× F = 〈0, 0, 3〉 and ~n = 〈0, 0, 1〉, so∫∫
D

(∇× F ) · d~S =

∫∫
D

(∇× F ) · ~n dS =

∫∫
D

〈0, 0, 3〉 · 〈0, 0, 1〉 dS =

∫∫
D

3 dS = 3π.

Putting this all together,∫∫
S

(∇× F ) · d~S =

∫
γ

F · d~r =

∫∫
D

(∇× F ) · d~S = 3π.
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Example: Evaluate
∫
γ
F · d~r where F (x, y, z) = 〈yz, xz, xy〉 and γ is the portion of the

circle x2 + z2 = 1, y = 1 above the xy plane, oriented from (1, 1, 0) to (−1, 1, 0).

In the plane y = 1:

x

z

γ

x

z

γ

ψ

D

Using Stokes’ Theorem: Let ψ be the line segment from (−1, 1, 0) to (1, 1, 0).

Then γ + ψ is the boundary of D, the half-disc x2 + z2 ≤ 1, z ≥ 0, y = 1, oriented
appropriately. (In the picture, ~n should be pointing at us, which gives ~n = 〈0,−1, 0〉.) By
Stokes’s Theorem ∫

γ

F · d~r +

∫
ψ

F · d~r =

∫∫
D

(∇× F ) · d~S.

We can compute ∇× F = 〈0, 0, 0〉, so∫∫
D

(∇× F ) · d~S =

∫∫
D

〈0, 0, 0〉 · d~S = 0.

On ψ, we have z = 0, so F = 〈0, 0, xy〉. Also, on ψ we have d~r = ~T ds and ~T = 〈1, 0, 0〉, so∫
ψ

F · d~r =

∫
ψ

F · ~T ds =

∫
ψ

〈0, 0, xy〉 · 〈1, 0, 0〉 ds = 0.

Therefore, we have ∫
γ

F · d~r + 0 = 0;∫
γ

F · d~r = 0.
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Example continued with some other methods:
Evaluate

∫
γ
F · d~r where F (x, y, z) = 〈yz, xz, xy〉 and γ is the portion of the circle

x2 + z2 = 1, y = 1 above the xy plane, oriented from (1, 1, 0) to (−1, 1, 0).

Using the Fundamental Theorem of Line Integrals: The fact that ∇ × F = 〈0, 0, 0〉 on
all of R3 tells us that F is conservative. If we look for a potential function for F we will
discover that F = ∇f where f(x, y, z) = xyz. Therefore∫

γ

F · d~r =

∫
γ

∇f · d~r = f(−1, 1, 0)− f(1, 1, 0) = 0.

Directly: Parametrize γ by ~r(t) = 〈cos t, 1, sin t〉 for 0 ≤ t ≤ π. Then∫
γ

〈yz, xz, xy〉 · d~r =

∫ π

0

〈sin t, cos t sin t, cos t〉 · 〈− sin t, 0 cos t〉 dt =

∫ π

0

(cos2 t− sin2 t) dt =

∫ π

0

(
1 + cos(2t)

2
− 1− cos(2t)

2

)
dt =

∫ π

0

cos(2t) dt =
sin(2t)

2

∣∣∣∣∣
t=π

t=0

= 0.
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Example: S is the surface parametrized by ~r(u, v) = 〈u cos v, u sin v, v〉, 0 ≤ u ≤ 1,

0 ≤ v ≤ π

2
, oriented so ~n points in the direction of ~ru × ~rv, and γ is the positively oriented

boundary of S.

Determine which way the unit vector ~n points, and draw arrows on the picture to indicate
the orientation of γ.

If F (x, y, z) = 〈z, x2, y〉, find ∫
γ

F · d~r

in two ways, by directly computing the line integral, and by using Stokes’ Theorem.
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Example: Use Stokes’s Theorem to find

∫∫
S

(∇× F ) d~S where S is the portion of the

cone z = 1 −
√
x2 + y2 in the first octant, oriented so ~n points away from the z-axis, and

F (x, y, z) =
〈
−y + (x+ z) cosx, x− zy3, exy

〉
.
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Example: Suppose that F is a vector field whose components have continuous partial
derivatives, and S is a sphere with outward-pointing normal. Use Stokes’ Theorem to show
that ∫∫

S

(∇× F ) · d~S = 0.
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Challenge: Suppose that F is a fluid flow field that varies over time, so that F (x, y, z, t)
is the velocity of fluid flow at point (x, y, z) and time t. If S is an oriented surface, how
would you use integrals to find how much fluid flows through S between times t = a and
t = b?
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