Math 11
Fall 2016
Section 1
Monday, November 7, 2016

First, some important points from the last class:
Parametrize a surface S in \mathbb{R}^{3} by representing it as the range of a function $\vec{r}(u, v)$.
Lines $u=$ constant and $v=$ constant on the surface are grid curves.

If $\vec{r}(u, v)=\langle x, y, z\rangle$ (where x, y, and z are functions of u and v), then:

$$
\vec{r}_{u}=\left\langle\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right\rangle \quad \vec{r}_{v}=\left\langle\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right\rangle .
$$

The vector $\vec{r}_{u} \times \vec{r}_{v}$ is normal to the surface, and the element of surface area is

$$
d S=\left|\vec{r}_{u} \times \vec{r}_{v}\right| d u d v
$$

To find the surface area of S we convert the surface integral $\iint_{S} d S$ into a double integral over the domain of the parametrization in the $u v$ plane.

The unit normal vector to S is

$$
\vec{n}=\frac{1}{\left|\vec{r}_{u} \times \vec{r}_{v}\right|}\left(\vec{r}_{u} \times \vec{r}_{v}\right) .
$$

The direction of \vec{n} gives an orientation to S. We can think of the side of the surface from which \vec{n} points away as the right side of the surface, and the other as the wrong side.

Today: Surface integrals.
Preview: We had two vector versions of Green's Theorem. If $F=\langle P, Q, 0\rangle$, where P and Q are functions of x and y, and D is a sufficiently nice region in the $x y$ plan, then we can write Green's Theorem as:

$$
\iint_{D}(\nabla \times F) \cdot \mathbf{k} d A=\int_{\partial D} F \cdot T d s .
$$

That is, the line integral of the tangential component of F around the boundary of D equals the integral of the vertical component of the curl of F over D.

Let \vec{n} be the unit vector normal to ∂D and pointing outward from D in the $x y$ plane. Then we can write Green's Theorem as:

$$
\iint_{D} \nabla \cdot F d A=\int_{\partial D} F \cdot \vec{n} d s .
$$

That is, the line integral of the normal component of F around the boundary of D equals the integral of the divergence of F over D.

Each of these versions of Green's Theorem has a three-dimensional version.
Stokes' Theorem: If S is a sufficiently nice oriented surface in \mathbb{R}^{3} with positively oriented boundary ∂S, and F is a sufficiently nice vector field, then

$$
\iint_{S}(\nabla \times F) \cdot \vec{n} d S=\int_{\partial S} F \cdot T d s
$$

The Divergence Theorem: If D is a sufficiently nice three-dimensional region in \mathbb{R}^{3} with positively oriented boundary ∂D, and F is a sufficiently nice vector field, then

$$
\iiint_{D}(\nabla \cdot F) d V=\iint_{\partial D} F \cdot \vec{n} d S
$$

Before we can really state these theorems, we need to know what those surface integrals $\iint_{S}(\nabla \times F) \cdot \vec{n} d S$ and $\iint_{\partial D} F \cdot \vec{n} d S$ are.

First, the integral over the surface S of a scalar function f.
If f is constant with value C, the value of this integral is (C) (area (S)). If f is not constant, we approximate the integral by dividing S into many little nearly parallelogram shaped pieces, multiplying the area of each piece by the value of f at a point on that piece, and adding up the results. In the limit, we get the surface integral

$$
\iint_{S} f d S .
$$

If S is parametrized by $\vec{r}(u, v)$ for (u, v) in the domain D, this integral becomes

$$
\iint_{D} f(\vec{r}(u, v)) \underbrace{\left|\vec{r}_{u} \times \vec{r}_{v}\right| d u d v}_{d S}
$$

Example: If S is the portion of the paraboloid parametrized by $\vec{r}(u, v)=\left\langle u \cos v, u \sin v, u^{2}\right\rangle$ for $0 \leq u \leq 1,0 \leq v \leq 2 \pi$, find $\iint_{S} \sqrt{4 z+1} d S$.

$$
\begin{gathered}
\left|\vec{r}_{u} \times \vec{r}_{v}\right|=|\langle\cos v,-\sin v, 2 u\rangle \times\langle-u \sin v, u \cos v, 0\rangle|= \\
\left|\left\langle-2 u^{2} \cos v,-2 u^{2} \sin v, u\right\rangle\right|=u \sqrt{4 u^{2}+1} ; \\
d S=\left(u \sqrt{4 u^{2}+1}\right) d u d v \\
\iint_{S} \sqrt{4 z+1} d S=\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{4 u^{2}+1}\left(u \sqrt{4 u^{2}+1}\right) d u d v=\int_{0}^{2 \pi} \int_{0}^{1}\left(4 u^{3}+u\right) d u d v=3 \pi
\end{gathered}
$$

Here are some applications of surface integrals of scalar functions:

1. $\iint_{S} 1 d S$ is the surface area of S.
2. If f represents the mass density of the surface at a point (say in grams per square meter), then $\iint_{S} f d S$ is the total mass of the surface.
3. The average value of f on S is $\frac{1}{\operatorname{area}(S)} \iint_{S} f d S$.

Example: If S is the portion of the plane $x+y+z=1$ in the first octant, oriented with unit normal vector \vec{n} slanting upward, and $F(x, y, z)=\langle x, y, z\rangle$, integrate the component of F in the direction of \vec{n} over the surface S.

S has equation $z=1-x-y$, so we can parametrize S by $\vec{r}(u, v)=\langle u, v, 1-u-v\rangle$. The limits on u and v are the limits on x and y over S, which are $0 \leq u \leq 1,0 \leq v \leq 1-u$. A normal vector is

$$
\vec{r}_{u} \times \vec{r}_{v}=\langle 1,0,-1\rangle \times\langle 0,1,-1\rangle=\langle 1,1,1\rangle
$$

which we can check has the correct orientation. Therefore, the unit normal vector is

$$
\vec{n}=\left\langle\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right\rangle,
$$

and the component of F in this direction is

$$
\frac{F \cdot \vec{n}}{|\vec{n}|}=F \cdot \vec{n}=\langle x, y, z\rangle \cdot\left\langle\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right\rangle=\frac{x+y+z}{\sqrt{3}} .
$$

This gives us

$$
\begin{gathered}
\iint_{S} F \cdot \vec{n} d S=\iint_{S} \frac{x+y+z}{\sqrt{3}} d S=\int_{0}^{1} \int_{0}^{1-u} \frac{u+v+(1-u-v)}{\sqrt{3}}\left|\vec{r}_{u} \times \vec{r}_{v}\right| d v d u= \\
\int_{0}^{1} \int_{0}^{1-u} \frac{1}{\sqrt{3}} \sqrt{3} d v d u=\int_{0}^{1} \int_{0}^{1-u} 1 d v d u=\int_{0}^{1}(1-u) d u=\frac{1}{2}
\end{gathered}
$$

In the last example, it was not an accident that the $\sqrt{3}$ in the denominator of $F \cdot \vec{n}$ and the $\sqrt{3}$ in $d S$ canceled out. In general, for any vector field F and any surface S, we have

$$
\begin{gathered}
d S=\left|\vec{r}_{u} \times \vec{r}_{v}\right| d u d v \\
\vec{n}=\frac{1}{\left|\vec{r}_{u} \times \vec{r}_{v}\right|}\left(\vec{r}_{u} \times \vec{r}_{v}\right) \\
F \cdot \vec{n}=F \cdot\left(\frac{1}{\left|\vec{r}_{u} \times \vec{r}_{v}\right|}\left(\vec{r}_{u} \times \vec{r}_{v}\right)\right)=\left(F \cdot\left(\vec{r}_{u} \times \vec{r}_{v}\right)\right)\left(\frac{1}{\left|\vec{r}_{u} \times \vec{r}_{v}\right|}\right) \\
F \cdot n d S=\left(\left(F \cdot\left(\vec{r}_{u} \times \vec{r}_{v}\right)\right)\left(\frac{1}{\left|\vec{r}_{u} \times \vec{r}_{v}\right|}\right)\right)\left(\left|\vec{r}_{u} \times \vec{r}_{v}\right| d u d v\right)=\left(F \cdot\left(\vec{r}_{u} \times \vec{r}_{v}\right)\right) d u d v .
\end{gathered}
$$

Definition: The surface integral of a vector function F over an oriented surface S is defined to be

$$
\iint_{S} F \cdot \vec{n} d S, \text { also denoted } \iint_{S} F \cdot d \vec{S}
$$

which is evaluated using

$$
d \vec{S}=\vec{n} d S=\left(\vec{r}_{u} \times \vec{r}_{v}\right) d u d v
$$

By the same reasoning we applied to $\int_{\gamma} F \cdot \vec{n} d s$ when we were thinking about the vector forms of Green's Theorem, we can see that if F is a fluid flow field, then the surface integral $\iint_{S} F \cdot \vec{n} d S$ represents the rate of flow through the surface S in the direction given by \vec{n}.

If F is an electric field, then the surface integral $\iint_{S} F \cdot \vec{n} d S$ represents the electric flux through S. If S is the outward-oriented boundary of a three-dimensional region D, then Gauss's Law says that the electric flux through S is a constant multiple of the net charge on D. (The constant depends on the units, not on D or F.)

If f represents temperature, then an appropriate constant multiple of $-\nabla f$ represents the heat flow field F, and $\iint_{S} F \cdot \vec{n} d S$ represents the rate of heat flow through S.

Example: Let D be the three-dimensional region $x^{2}+y^{2} \leq 1,0 \leq z \leq 1$, let S be the boundary (surface) of D oriented so \vec{n} points outward, and let $F(x, y, z)=\langle-y, x, z\rangle$. Find $\iint_{S} F \cdot d \vec{S}$.

The surface of S consists of three parts, the cylinder $x^{2}+y^{2}=1$ with $0 \leq z \leq 1$, oriented so \vec{n} points away from the z-axis; the disc $z=1$ with $x^{2}+y^{2} \leq 1$, oriented so \vec{n} points upward; and the the disc $z=0$ with $x^{2}+y^{2} \leq 1$, oriented so \vec{n} points downward.

For the cylindrical surface S_{1}, we can use the parametrization $\vec{r}(u, v)=\langle\cos u, \sin u, v\rangle$ with $0 \leq u \leq 2 \pi$ and $0 \leq v \leq 1$. Then we have

$$
\vec{r}_{u} \times \vec{r}_{v}=\langle-\sin u, \cos u, 0\rangle \times\langle 0,0,1\rangle=\langle\cos u, \sin u, 0\rangle,
$$

which we can check has the correct orientation. Then
$\iint_{S_{1}}\langle-y, x, z\rangle \cdot d \vec{S}=\int_{0}^{2 \pi} \int_{0}^{1}\langle-\sin u, \cos u, v\rangle \cdot\langle\cos u, \sin u, 0\rangle d u d v=\int_{0}^{2 \pi} \int_{0}^{1} 0 d u d v=0$.
We could also have figured this out without parametrizing the surface. On the cylinder, the normal vector at point (x, y, z) points directly away from the z-axis, so it points in the direction given by $\langle x, y, 0\rangle$. This direction is normal to the direction $\langle-y, x, z\rangle$, or of F. We can see this must be the case because we can write F as the sum of two vector fields $\langle-y, x, 0\rangle+\langle 0,0, z\rangle$, each of which we can see flows tangent to the cylinder, and we can check that it is the case because $\langle x, y, 0\rangle \cdot\langle-y, x, z\rangle=0$. Since F is normal to \vec{n}, or parallel to S_{1}, the component of F in the direction of \vec{n}, or normal to S_{1}, is zero. That is $F \cdot \vec{n}=0$, so $\iint_{S_{1}} F \cdot \vec{n} d S=0$.

For the top disc S_{2}, we can use the parametrization $\vec{r}(u, v)=\langle u, v, 1\rangle$ with $u^{2}+v^{2} \leq 1$. Then we have

$$
\vec{r}_{u} \times \vec{r}_{v}=\langle 1,0,0\rangle \times\langle 0,1,0\rangle=\langle 0,0,1\rangle,
$$

which we can see points upward, which is the correct orientation. It is already a unit vector.

$$
\iint_{S_{2}} F \cdot d \vec{S}=\iint_{u^{2}+v^{2} \leq 1}\langle-v, u, 1\rangle \cdot\langle 0,0,1\rangle d A=\iint_{u^{2}+v^{2} \leq 1} 1 d A=\pi
$$

We could also have figured this out without parametrizing the disc. Since the disc is horizontal, the unit normal vector is \hat{k}, and the component of F in this direction is its z-component, which is z, or 1 on this disc. Integrating 1 over the disc gives its surface area.

For the bottom disc S_{3}, we can reason that $\vec{n}=-\hat{k}$, and the component of F in this direction is minus its z-component, which is $-z$, or 0 on this disc. The surface integral is 0 .

$$
\iint_{S} F \cdot d \vec{S}=\iint_{S_{1}} F \cdot d \vec{S}+\iint_{S_{2}} F \cdot d \vec{S}+\iint_{S_{3}} F \cdot d \vec{S}=0+\pi+0=\pi
$$

Example: Stokes' Theorem (which we haven't gotten to yet) says: If S is a sufficiently nice oriented surface in \mathbb{R}^{3} with positively oriented boundary ∂S, and F is a sufficiently nice vector field, then

$$
\iint_{S}(\nabla \times F) \cdot \vec{n} d S=\int_{\partial S} F \cdot T d s
$$

Verify this when S is the top half of the unit sphere, oriented with \vec{n} pointing up, ∂S is the unit circle in the $x y$ plane, counterclockwise as seen from above, $F(x, y, z)=\langle-y z, x z, 0\rangle$.

To verify this means to evaluate the integrals on both sides of the equation

$$
\iint_{S}(\nabla \times F) \cdot \vec{n} d S=\int_{\partial S} F \cdot T d s
$$

and see that we get the same answer.

$$
\nabla \times F=\langle-x,-y, 2 z\rangle
$$

We can use spherical coordinates to parametrize S (with $u=\phi, v=\theta, \rho=1$):

$$
\begin{gathered}
\langle x, y, z\rangle=\vec{r}(u, v)=\langle\sin u \cos v, \sin u \sin v, \cos u\rangle \quad 0 \leq u \leq \frac{\pi}{2} \quad 0 \leq v \leq 2 \pi \\
\vec{r}_{u} \times \vec{r}_{v}=\langle\cos u \cos v, \cos u \sin v,-\sin u\rangle \times\langle-\sin u \sin v, \sin u \cos v, 0\rangle= \\
\left\langle\sin ^{2} u \cos v, \sin ^{2} u \sin v, \cos u \sin u\right\rangle \\
\iint_{S}(\nabla \times F) \cdot \vec{n} d S= \\
\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}}\langle-\sin u \cos v,-\sin u \sin v, 2 \cos u\rangle \cdot\left\langle\sin ^{2} u \cos v, \sin ^{2} u \sin v, \cos u \sin u\right\rangle d u d v= \\
\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}}-\sin ^{3} u \cos ^{2} v-\sin ^{3} u \sin ^{2} v+2 \cos ^{2} u \sin u d u d v= \\
\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}}\left(-\sin ^{2} u+2 \cos ^{2} u\right) \sin u d u d v=\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}}\left(-\left(1-\cos ^{2} u\right)+2 \cos ^{2} u\right) \sin u d u d v= \\
\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}}\left(3 \cos ^{2} u-1\right) \sin u d u d v=\left.\int_{0}^{2 \pi}\left(-\cos ^{3} u+\cos u\right)\right|_{u=0} ^{u=\frac{\pi}{2}} d v=0 .
\end{gathered}
$$

For the line integral, parametrize ∂S via $\vec{r}(t)=\langle\cos t, \sin t, 0\rangle$ for $0 \leq t \leq 2 \pi$. Then

$$
\int_{\partial S} F \cdot T d s=\int_{\partial S} F \cdot d \vec{r}=\int_{0}^{2 \pi}\langle 0,0,0\rangle \cdot\langle-\sin t, \cos t, 0\rangle d t=\int_{0}^{2 \pi} 0 d t=0 .
$$

Using Stokes's Theorem would have been an easier way to evaluate the surface integral!

Example: Find the average z-component of a point on the conical surface given by

$$
z=\sqrt{x^{2}+y^{2}} \quad 0 \leq z \leq 1
$$

Example: If S is the surface

$$
z=1-x^{2} \quad z \geq 0 \quad 0 \leq y \leq 1,
$$

oriented with \vec{n} pointing upward, and $F(x, y, z)=\langle x, y, z\rangle$, find

$$
\iint_{S} F \cdot d \vec{S}
$$

Example: Suppose that D is a three-dimensional region in \mathbb{R}^{3} defined by $(x, y) \in E$, $0 \leq z \leq g(x, y)$, where E is a simply connected region in the $x y$ plane with piecewise smooth boundary, and suppose that $F(x, y, z)=\langle 0,0, f(x, y)\rangle$ is a continuous vector field. Let S be the boundary (surface) of D, oriented so that \vec{n} is pointing outward (away from D). Then S breaks up into three pieces, S_{1} in the $x y$ plane with \vec{n} pointing downward, S_{2} in the graph of g with \vec{n} pointing upward, and S_{3}, a vertical curved surface connecting the boundaries of S_{1} and S_{2}, with \vec{n} pointing horizontally outward away from D.

By parametrizing S_{1} with $\vec{r}(u, v)=\langle v, u, 0\rangle$ and S_{2} with $\vec{r}(u, v)=\langle u, v, g(u, v)\rangle$ (check that these parametrizations give the correct orientations), and expressing the surface integrals as integrals in u and v, show that

$$
\iint_{S_{2}} F \cdot d \vec{S}=-\iint_{S_{1}} F \cdot d \vec{S}
$$

Explain why we know that

$$
\iint_{S_{3}} F \cdot d \vec{S}=0
$$

What is $\iint_{S} F \cdot d \vec{S}$? Given what we know about F, and the interpretation of $\iint_{S} F \cdot d \vec{S}$ as the rate of flow of F through S, explain why we should have expected this.
(This is not just because F is vertical. If D is the cylindrical surface $x^{2}+y^{2} \leq 1$, $0 \leq z \leq 1$, and $F(x, y, z)=\langle 0,0, z\rangle$, you can check that the surface integral of F over the boundary of D is π.)

