Math 11
Fall 2016
Section 1
Monday, November 7, 2016
First, some important points from the last class:

Parametrize a surface S in R? by representing it as the range of a function 7(u, v).

Lines u = constant and v = constant on the surface are grid curves.
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If 7(u,v) = (x,y,z) (where z, y, and z are functions of u and v), then:
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The vector 7, X 7, is normal to the surface, and the element of surface area is

dS = |7y X 7| dudv.

To find the surface area of S we convert the surface integral / / dS into a double integral
s
over the domain of the parametrization in the uv plane.

The unit normal vector to S is
— ]' — —
n=-———-s- (Tu X TU) .
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The direction of 77 gives an orientation to S. We can think of the side of the surface from
which 77 points away as the right side of the surface, and the other as the wrong side.



Today: Surface integrals.

Preview: We had two vector versions of Green’s Theorem. If F' = (P, Q,0), where P and
(@ are functions of  and y, and D is a sufficiently nice region in the xy plan, then we can

write Green’s Theorem as:
//(VxF)~de:/ F-Tds.
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That is, the line integral of the tangential component of F' around the boundary of D equals
the integral of the vertical component of the curl of F' over D.

Let 77 be the unit vector normal to D and pointing outward from D in the xy plane.
Then we can write Green’s Theorem as:

[[v-Faa=[ Feias
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That is, the line integral of the normal component of F' around the boundary of D equals
the integral of the divergence of F' over D.

Each of these versions of Green’s Theorem has a three-dimensional version.

Stokes’ Theorem: If S is a sufficiently nice oriented surface in R3 with positively oriented
boundary 05, and F' is a sufficiently nice vector field, then

//S(VXF)-ﬁdS:/asF-Tds.

The Divergence Theorem: If D is a sufficiently nice three-dimensional region in R? with
positively oriented boundary 0D, and F' is a sufficiently nice vector field, then

///D(V-F)dV://aDF-ﬁdS.

Before we can really state these theorems, we need to know what those surface integrals

//(VXF)ﬁdSand// F-ndS are.
S oD



First, the integral over the surface S of a scalar function f.

If f is constant with value C, the value of this integral is (C)(area(S)). If f is not
constant, we approximate the integral by dividing S into many little nearly parallelogram
shaped pieces, multiplying the area of each piece by the value of f at a point on that piece,
and adding up the results. In the limit, we get the surface integral

//Sde.

If S is parametrized by 7(u,v) for (u,v) in the domain D, this integral becomes

//f \ruxrv| dudv .

dS

Example: If S is the portion of the paraboloid parametrized by 7(u,v) = (ucos v, usin v, u?)

f0r0§u§1,0§v§27r,ﬁnd//\/4z+1d5.
s

|7 X | = | (cosv, —sinw, 2u) x (—usinv, ucosv,0) | =
| (—2u? cosv, —2u’sinv, u) | = uv4u? + 1;
ds = (uv 4u? + 1) du dv;

27 1 27 1
// \/4z+1dS:/ / \/4u2+1(ux/4u2+1) dudv:/ / (4u3+u) dudv = 3.
s o Jo o Jo

Here are some applications of surface integrals of scalar functions:
1. // 1dS is the surface area of S.
S

2. If f represents the mass density of the surface at a point (say in grams per square

meter), then // f dS is the total mass of the surface.

S
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3. The average value of f on S is



Example: If S is the portion of the plane z + 3+ 2z = 1 in the first octant, oriented with
unit normal vector 7 slanting upward, and F'(z,y, z) = (z,y, z), integrate the component of
F' in the direction of 7 over the surface S.

r+y=1

S has equation z = 1 —x —y, so we can parametrize S by 7(u,v) = (u,v,1 —u —v). The
limits on u and v are the limits on z and y over S, whichare 0 <u <1, 0<v<1—wu. A
normal vector is

7y x 7 = (1,0,—1) x (0,1,—1) = (1,1,1),

which we can check has the correct orientation. Therefore, the unit normal vector is

and the component of F' in this direction is

F-i
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This gives us
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In the last example, it was not an accident that the v/3 in the denominator of F - 7 and
the v/3 in dS canceled out. In general, for any vector field F and any surface S, we have

dS = |7y X Tp| dudv

Fei=F. (%(Fu x ﬁ,)) — (F-(Fy x 7)) (#)

|70 X T
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Definition: The surface integral of a vector function F' over an oriented surface S is

defined to be
//F-ﬁdS, also denoted //F-dg,
S S

dS = it dS = (7, X 7) du dv.

which is evaluated using

By the same reasoning we applied to / F - nds when we were thinking about the vector

2.
forms of Green’s Theorem, we can see that if F'is a fluid flow field, then the surface integral

/ / F -11dS represents the rate of flow through the surface S in the direction given by 7.
S

If F'is an electric field, then the surface integral / / F - 11dS represents the electric flux

through S. If S is the outward-oriented boundary of Sa three-dimensional region D, then
Gauss’s Law says that the electric flux through S is a constant multiple of the net charge on
D. (The constant depends on the units, not on D or F.)

If f represents temperature, then an appropriate constant multiple of —V f represents

the heat flow field F', and / / F - 11dS represents the rate of heat flow through S.
s



Example: Let D be the three-dimensional region 22 + 92 <1, 0 < 2 < 1, let S be the
boundary (surface) of D oriented so 7 points outward, and let F(x,y,2) = (—y,x, z). Find
F-dS.
S
The surface of S consists of three parts, the cylinder 224 y? = 1 with 0 < z < 1, oriented

so 7 points away from the z-axis; the disc z = 1 with 22 + y? < 1, oriented so 7 points
upward; and the the disc z = 0 with 2% 4+ y? < 1, oriented so 7 points downward.

For the cylindrical surface S;, we can use the parametrization 7(u,v) = (cosu, sinu, v)
with 0 <4 <27 and 0 < v < 1. Then we have

Ty X Ty = (—sinu, cosu,0) x (0,0,1) = (cosu,sinu,0),

which we can check has the correct orientation. Then

2 1 2m 1
// (—y,x,z>'d§:/ / (— sinu, cos u, v) - (cos u, sinu, 0) dudv:/ / 0dudv = 0.
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We could also have figured this out without parametrizing the surface. On the cylinder,
the normal vector at point (x,y, z) points directly away from the z-axis, so it points in the
direction given by (z,y,0). This direction is normal to the direction (—y,z,z), or of F.
We can see this must be the case because we can write F' as the sum of two vector fields
(—y,z,0)4 (0,0, z), each of which we can see flows tangent to the cylinder, and we can check
that it is the case because (z,y,0) - (—y,x, z) = 0. Since F' is normal to 7, or parallel to S,
the component of F' in the direction of 7, or normal to Sy, is zero. That is F'- 7 = 0, so

// F-ndS=0.
S1

For the top disc Sy, we can use the parametrization 7(u,v) = (u,v,1) with u? + v? < 1.
Then we have
7, % 7 = (1,0,0) x (0,1,0) = (0,0,1) ,

which we can see points upward, which is the correct orientation. It is already a unit vector.

//F~d§:// <—v,u,1)~<0,0,1>dA:// 1dA = 7.
So u24+02<1 u2+4+0v2<1

We could also have figured this out without parametrizing the disc. Since the disc is horizon-
tal, the unit normal vector is k, and the component of F' in this direction is its z-component,
which is z, or 1 on this disc. Integrating 1 over the disc gives its surface area.

For the bottom disc S3, we can reason that n = —/%, and the component of F' in this
direction is minus its z-component, which is —z, or 0 on this disc. The surface integral is 0.

//F~d§:// F-d§+// F.d§+// F-dS=0+7+0=r.
S S1 Sa S3



Example: Stokes’ Theorem (which we haven’t gotten to yet) says: If S is a sufficiently
nice oriented surface in R? with positively oriented boundary 05, and F is a sufficiently nice

vector field, then
//(VxF)-ﬁdS:/ F-Tds.
S s

Verify this when S is the top half of the unit sphere, oriented with 77 pointing up, 95 is the
unit circle in the zy plane, counterclockwise as seen from above, F(x,y, z) = (—yz, zz,0).

To verify this means to evaluate the integrals on both sides of the equation

//WxFymw:/zWTw
S oS

and see that we get the same answer.
VX F={(—z,-y,2z).
We can use spherical coordinates to parametrize S (with u = ¢, v =0, p=1):

(x,y,z) = (u,v) = (sinucosv,sinusinv,cosu) 0 <u< 0<wv<2r

bo| 3

T X Ty = {€OSucos v, cosusinv, —sinu) X (—sinusinv, sinwu cosv,0) =

<sin2 wcos v, sin? u sin v, cos u sin u>

/waFymw:

2m 5 ) )
(—sinucosv, —sinusinv, 2 cosu) - (sin® ucos v, sin® usinv, cosusinu) dudv =
o Jo
2m 5
.3 2 32 2,
/ / —sin® wcos” v — sin” usin® v + 2 cos” usinu du dv =

2w 2 2m
/ / (—sin® u + 2 cos? u)smududv—/ / —(1 — cos?u) + 2 cos® u) sinu du dv =
0

/ / (3 cos? u—l)smududv—/ (— cos® u + cos u)

For the line integral, parametrize 05 via 7(t) = (cost,sint,0) for 0 < ¢ < 27. Then

2 2
/ F-Td:s:/ F-dF:/ (0,0,0) - (—sint, cost,0) dt:/ 0dt = 0.
s s 0 0

Using Stokes’s Theorem would have been an easier way to evaluate the surface integral!

_r
u=3

dv = 0.

u=0



Example: Find the average z-component of a point on the conical surface given by

2z =\/2% + 9?2 0<z<1.



Example: If S is the surface
z2=1—2? z2>0 0<y<1,

oriented with 7 pointing upward, and F(z,y, z) = (x,y, z), find

//SF-dﬁ.



Example: Suppose that D is a three-dimensional region in R? defined by (z,y) € F,
0 <z < g(z,y), where E is a simply connected region in the zy plane with piecewise smooth
boundary, and suppose that F(x,y, z) = (0,0, f(x,y)) is a continuous vector field. Let S be
the boundary (surface) of D, oriented so that 7 is pointing outward (away from D). Then S
breaks up into three pieces, S; in the xy plane with @ pointing downward, S, in the graph
of g with 77 pointing upward, and S3, a vertical curved surface connecting the boundaries of
S1 and Sy, with 7 pointing horizontally outward away from D.

By parametrizing Sy with 7(u,v) = (v,u,0) and Sy with 7(u,v) = (u,v, g(u,v)) (check
that these parametrizations give the correct orientations), and expressing the surface inte-
grals as integrals in w and v, show that

// F-dgz—// F-dS.
So S1

Explain why we know that
/ / F-dS=0.
S3

What is F - dS? Given what we know about F , and the interpretation of / / F-dS
S S
as the rate of flow of F' through S, explain why we should have expected this.

(This is not just because F' is vertical. If D is the cylindrical surface 2% + y? < 1,
0<z<1,and F(z,y,2) = (0,0, z), you can check that the surface integral of F' over the
boundary of D is 7.)
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