
Math 11
Fall 2016
Section 1

Monday, November 7, 2016

First, some important points from the last class:

Parametrize a surface S in R3 by representing it as the range of a function ~r(u, v).

Lines u = constant and v = constant on the surface are grid curves.

If ~r(u, v) = 〈x, y, z〉 (where x, y, and z are functions of u and v), then:

~ru =

〈
∂x

∂u
,
∂y

∂u
,
∂z

∂u

〉
~rv =

〈
∂x

∂v
,
∂y

∂v
,
∂z

∂v

〉
.

The vector ~ru × ~rv is normal to the surface, and the element of surface area is

dS = |~ru × ~rv| du dv.

To find the surface area of S we convert the surface integral

∫∫
S

dS into a double integral

over the domain of the parametrization in the uv plane.

The unit normal vector to S is

~n =
1

|~ru × ~rv|
(~ru × ~rv) .

The direction of ~n gives an orientation to S. We can think of the side of the surface from
which ~n points away as the right side of the surface, and the other as the wrong side.

1



Today: Surface integrals.

Preview: We had two vector versions of Green’s Theorem. If F = 〈P,Q, 0〉, where P and
Q are functions of x and y, and D is a sufficiently nice region in the xy plan, then we can
write Green’s Theorem as: ∫∫

D

(∇× F ) · k dA =

∫
∂D

F · T ds.

That is, the line integral of the tangential component of F around the boundary of D equals
the integral of the vertical component of the curl of F over D.

Let ~n be the unit vector normal to ∂D and pointing outward from D in the xy plane.
Then we can write Green’s Theorem as:∫∫

D

∇ · F dA =

∫
∂D

F · ~n ds.

That is, the line integral of the normal component of F around the boundary of D equals
the integral of the divergence of F over D.

Each of these versions of Green’s Theorem has a three-dimensional version.

Stokes’ Theorem: If S is a sufficiently nice oriented surface in R3 with positively oriented
boundary ∂S, and F is a sufficiently nice vector field, then∫∫

S

(∇× F ) · ~n dS =

∫
∂S

F · T ds.

The Divergence Theorem: If D is a sufficiently nice three-dimensional region in R3 with
positively oriented boundary ∂D, and F is a sufficiently nice vector field, then∫∫∫

D

(∇ · F ) dV =

∫∫
∂D

F · ~n dS.

Before we can really state these theorems, we need to know what those surface integrals∫∫
S

(∇× F ) · ~n dS and

∫∫
∂D

F · ~n dS are.
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First, the integral over the surface S of a scalar function f .

If f is constant with value C, the value of this integral is (C)(area(S)). If f is not
constant, we approximate the integral by dividing S into many little nearly parallelogram
shaped pieces, multiplying the area of each piece by the value of f at a point on that piece,
and adding up the results. In the limit, we get the surface integral∫∫

S

f dS.

If S is parametrized by ~r(u, v) for (u, v) in the domain D, this integral becomes∫∫
D

f(~r(u, v)) |~ru × ~rv| du dv︸ ︷︷ ︸
dS

.

Example: If S is the portion of the paraboloid parametrized by ~r(u, v) = 〈u cos v, u sin v, u2〉
for 0 ≤ u ≤ 1, 0 ≤ v ≤ 2π, find

∫∫
S

√
4z + 1 dS.

|~ru × ~rv| = | 〈cos v,− sin v, 2u〉 × 〈−u sin v, u cos v, 0〉 | =

|
〈
−2u2 cos v,−2u2 sin v, u

〉
| = u

√
4u2 + 1;

dS =
(
u
√

4u2 + 1
)
du dv;∫∫

S

√
4z + 1 dS =

∫ 2π

0

∫ 1

0

√
4u2 + 1

(
u
√

4u2 + 1
)
du dv =

∫ 2π

0

∫ 1

0

(
4u3 + u

)
du dv = 3π.

Here are some applications of surface integrals of scalar functions:

1.

∫∫
S

1 dS is the surface area of S.

2. If f represents the mass density of the surface at a point (say in grams per square

meter), then

∫∫
S

f dS is the total mass of the surface.

3. The average value of f on S is
1

area(S)

∫∫
S

f dS.
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Example: If S is the portion of the plane x+ y+ z = 1 in the first octant, oriented with
unit normal vector ~n slanting upward, and F (x, y, z) = 〈x, y, z〉, integrate the component of
F in the direction of ~n over the surface S.

x

y

x+ y = 1

S has equation z = 1−x−y, so we can parametrize S by ~r(u, v) = 〈u, v, 1− u− v〉. The
limits on u and v are the limits on x and y over S, which are 0 ≤ u ≤ 1, 0 ≤ v ≤ 1− u. A
normal vector is

~ru × ~rv = 〈1, 0,−1〉 × 〈0, 1,−1〉 = 〈1, 1, 1〉 ,

which we can check has the correct orientation. Therefore, the unit normal vector is

~n =

〈
1√
3
,

1√
3
,

1√
3

〉
,

and the component of F in this direction is

F · ~n
|~n|

= F · ~n = 〈x, y, z〉 ·
〈

1√
3
,

1√
3
,

1√
3

〉
=
x+ y + z√

3
.

This gives us∫∫
S

F · ~n dS =

∫∫
S

x+ y + z√
3

dS =

∫ 1

0

∫ 1−u

0

u+ v + (1− u− v)√
3

|~ru × ~rv| dv du =

∫ 1

0

∫ 1−u

0

1√
3

√
3 dv du =

∫ 1

0

∫ 1−u

0

1 dv du =

∫ 1

0

(1− u) du =
1

2
.
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In the last example, it was not an accident that the
√

3 in the denominator of F · ~n and
the
√

3 in dS canceled out. In general, for any vector field F and any surface S, we have

dS = |~ru × ~rv| du dv

~n =
1

|~ru × ~rv|
(~ru × ~rv)

F · ~n = F ·
(

1

|~ru × ~rv|
(~ru × ~rv)

)
= (F · (~ru × ~rv))

(
1

|~ru × ~rv|

)
F · n dS =

(
(F · (~ru × ~rv))

(
1

|~ru × ~rv|

))
(|~ru × ~rv| du dv) = (F · (~ru × ~rv)) du dv.

Definition: The surface integral of a vector function F over an oriented surface S is
defined to be ∫∫

S

F · ~n dS, also denoted

∫∫
S

F · d~S,

which is evaluated using
d~S = ~n dS = (~ru × ~rv) du dv.

By the same reasoning we applied to

∫
γ

F · ~n ds when we were thinking about the vector

forms of Green’s Theorem, we can see that if F is a fluid flow field, then the surface integral∫∫
S

F · ~n dS represents the rate of flow through the surface S in the direction given by ~n.

If F is an electric field, then the surface integral

∫∫
S

F · ~n dS represents the electric flux

through S. If S is the outward-oriented boundary of a three-dimensional region D, then
Gauss’s Law says that the electric flux through S is a constant multiple of the net charge on
D. (The constant depends on the units, not on D or F .)

If f represents temperature, then an appropriate constant multiple of −∇f represents

the heat flow field F , and

∫∫
S

F · ~n dS represents the rate of heat flow through S.
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Example: Let D be the three-dimensional region x2 + y2 ≤ 1, 0 ≤ z ≤ 1, let S be the
boundary (surface) of D oriented so ~n points outward, and let F (x, y, z) = 〈−y, x, z〉. Find∫∫

S

F · d~S.

The surface of S consists of three parts, the cylinder x2 +y2 = 1 with 0 ≤ z ≤ 1, oriented
so ~n points away from the z-axis; the disc z = 1 with x2 + y2 ≤ 1, oriented so ~n points
upward; and the the disc z = 0 with x2 + y2 ≤ 1, oriented so ~n points downward.

For the cylindrical surface S1, we can use the parametrization ~r(u, v) = 〈cosu, sinu, v〉
with 0 ≤ u ≤ 2π and 0 ≤ v ≤ 1. Then we have

~ru × ~rv = 〈− sinu, cosu, 0〉 × 〈0, 0, 1〉 = 〈cosu, sinu, 0〉 ,

which we can check has the correct orientation. Then∫∫
S1

〈−y, x, z〉 · d~S =

∫ 2π

0

∫ 1

0

〈− sinu, cosu, v〉 · 〈cosu, sinu, 0〉 du dv =

∫ 2π

0

∫ 1

0

0 du dv = 0.

We could also have figured this out without parametrizing the surface. On the cylinder,
the normal vector at point (x, y, z) points directly away from the z-axis, so it points in the
direction given by 〈x, y, 0〉. This direction is normal to the direction 〈−y, x, z〉, or of F .
We can see this must be the case because we can write F as the sum of two vector fields
〈−y, x, 0〉+〈0, 0, z〉, each of which we can see flows tangent to the cylinder, and we can check
that it is the case because 〈x, y, 0〉 · 〈−y, x, z〉 = 0. Since F is normal to ~n, or parallel to S1,
the component of F in the direction of ~n, or normal to S1, is zero. That is F · ~n = 0, so∫∫

S1

F · ~n dS = 0.

For the top disc S2, we can use the parametrization ~r(u, v) = 〈u, v, 1〉 with u2 + v2 ≤ 1.
Then we have

~ru × ~rv = 〈1, 0, 0〉 × 〈0, 1, 0〉 = 〈0, 0, 1〉 ,
which we can see points upward, which is the correct orientation. It is already a unit vector.∫∫

S2

F · d~S =

∫∫
u2+v2≤1

〈−v, u, 1〉 · 〈0, 0, 1〉 dA =

∫∫
u2+v2≤1

1 dA = π.

We could also have figured this out without parametrizing the disc. Since the disc is horizon-
tal, the unit normal vector is k̂, and the component of F in this direction is its z-component,
which is z, or 1 on this disc. Integrating 1 over the disc gives its surface area.

For the bottom disc S3, we can reason that ~n = −k̂, and the component of F in this
direction is minus its z-component, which is −z, or 0 on this disc. The surface integral is 0.∫∫

S

F · d~S =

∫∫
S1

F · d~S +

∫∫
S2

F · d~S +

∫∫
S3

F · d~S = 0 + π + 0 = π.

6



Example: Stokes’ Theorem (which we haven’t gotten to yet) says: If S is a sufficiently
nice oriented surface in R3 with positively oriented boundary ∂S, and F is a sufficiently nice
vector field, then ∫∫

S

(∇× F ) · ~n dS =

∫
∂S

F · T ds.

Verify this when S is the top half of the unit sphere, oriented with ~n pointing up, ∂S is the
unit circle in the xy plane, counterclockwise as seen from above, F (x, y, z) = 〈−yz, xz, 0〉.

To verify this means to evaluate the integrals on both sides of the equation∫∫
S

(∇× F ) · ~n dS =

∫
∂S

F · T ds,

and see that we get the same answer.

∇× F = 〈−x,−y, 2z〉 .

We can use spherical coordinates to parametrize S (with u = φ, v = θ, ρ = 1):

〈x, y, z〉 = ~r(u, v) = 〈sinu cos v, sinu sin v, cosu〉 0 ≤ u ≤ π

2
0 ≤ v ≤ 2π

~ru × ~rv = 〈cosu cos v, cosu sin v,− sinu〉 × 〈− sinu sin v, sinu cos v, 0〉 =〈
sin2 u cos v, sin2 u sin v, cosu sinu

〉∫∫
S

(∇× F ) · ~n dS =∫ 2π

0

∫ π
2

0

〈− sinu cos v,− sinu sin v, 2 cosu〉 ·
〈
sin2 u cos v, sin2 u sin v, cosu sinu

〉
du dv =∫ 2π

0

∫ π
2

0

− sin3 u cos2 v − sin3 u sin2 v + 2 cos2 u sinu du dv =∫ 2π

0

∫ π
2

0

(− sin2 u+ 2 cos2 u) sinu du dv =

∫ 2π

0

∫ π
2

0

(−(1− cos2 u) + 2 cos2 u) sinu du dv =

∫ 2π

0

∫ π
2

0

(3 cos2 u− 1) sinu du dv =

∫ 2π

0

(− cos3 u+ cosu)

∣∣∣∣∣
u=π

2

u=0

dv = 0.

For the line integral, parametrize ∂S via ~r(t) = 〈cos t, sin t, 0〉 for 0 ≤ t ≤ 2π. Then∫
∂S

F · T ds =

∫
∂S

F · d~r =

∫ 2π

0

〈0, 0, 0〉 · 〈− sin t, cos t, 0〉 dt =

∫ 2π

0

0 dt = 0.

Using Stokes’s Theorem would have been an easier way to evaluate the surface integral!
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Example: Find the average z-component of a point on the conical surface given by

z =
√
x2 + y2 0 ≤ z ≤ 1.
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Example: If S is the surface

z = 1− x2 z ≥ 0 0 ≤ y ≤ 1,

oriented with ~n pointing upward, and F (x, y, z) = 〈x, y, z〉, find∫∫
S

F · d~S.
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Example: Suppose that D is a three-dimensional region in R3 defined by (x, y) ∈ E,
0 ≤ z ≤ g(x, y), where E is a simply connected region in the xy plane with piecewise smooth
boundary, and suppose that F (x, y, z) = 〈0, 0, f(x, y)〉 is a continuous vector field. Let S be
the boundary (surface) of D, oriented so that ~n is pointing outward (away from D). Then S
breaks up into three pieces, S1 in the xy plane with ~n pointing downward, S2 in the graph
of g with ~n pointing upward, and S3, a vertical curved surface connecting the boundaries of
S1 and S2, with ~n pointing horizontally outward away from D.

By parametrizing S1 with ~r(u, v) = 〈v, u, 0〉 and S2 with ~r(u, v) = 〈u, v, g(u, v)〉 (check
that these parametrizations give the correct orientations), and expressing the surface inte-
grals as integrals in u and v, show that∫∫

S2

F · d~S = −
∫∫

S1

F · d~S.

Explain why we know that ∫∫
S3

F · d~S = 0.

What is

∫∫
S

F · d~S? Given what we know about F , and the interpretation of

∫∫
S

F · d~S
as the rate of flow of F through S, explain why we should have expected this.

(This is not just because F is vertical. If D is the cylindrical surface x2 + y2 ≤ 1,
0 ≤ z ≤ 1, and F (x, y, z) = 〈0, 0, z〉, you can check that the surface integral of F over the
boundary of D is π.)
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