
Math 11
Fall 2016
Section 1

Wednesday, November 2, 2016

First, some important points from the last class:

Definition: A curve γ is closed if its beginning point equals its end point, simple if it
does not cross itself, and piecewise smooth if it can be divided into finitely many smooth
curves.

Definition: If D is a closed, simply connected region in R2 and γ is the boundary of D,
the positive orientation on γ circles D counterclockwise.

Another way to say this is that when moving along γ in the direction of the orientation,
the inside of the region D is on your left. If D is not simply connected, this gives the correct
positive orientation on curves bounding holes in D as well.

Green’s Theorem: If F = 〈P,Q〉 is a vector field on an open region E that includes
a closed region D that is both Type I and Type II (or can be divided into finitely many
such regions), the components of F have continuous partial derivatives on E, and ∂D is the
positively-oriented boundary of D, then∫

∂D

P dx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA.

There are at least three different ways to use Green’s Theorem to evaluate integrals:

Evaluate a line integral around a closed curve by instead evaluating a double integral.

Evaluate a double integral by instead evaluating a line integral around a closed curve.

Evaluate a line integral by instead evaluating a different line integral and a double inte-
gral.

∂Q

∂x
− ∂P

∂y
is the (counterclockwise) rotational tendency produced by the vector field F .

The integral

∫
∂D

F · d~r is sometimes called the circulation of F around ∂D.

Green’s Theorem says that the circulation of F around the boundary of D equals the
integral over D of the rotational tendency of F .
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Today: Curl (rotational tendency) and divergence (expansionary tendency) of vector fields.

Notation: We sometimes write

∇ =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
.

∇, called “del,” is a vector differential operator. In this context, an operator is a kind

of function, for which the inputs and outputs are themselves functions.
d

dx
and

∂

∂x
are

examples of scalar differential operators.
We use ∇ to keep notational track of various combinations of partial derivatives we have

defined or are about to define. For example, if f is a function from R3 to R, then the gradient
of f is

∇f =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
f =

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
.

We may use the same notation in other dimensions. However, the following definition is
only for R3. (You can see that, because it involves the cross product.)

Definition: If F = 〈P,Q,R〉 is a three-dimensional vector field, then the curl of F is

curl(F ) = ∇× F =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

P Q R

∣∣∣∣∣∣∣∣∣∣∣∣
=

〈
∂R

∂y
− ∂Q

∂z
,
∂P

∂z
− ∂R

∂x
,
∂Q

∂x
− ∂P

∂y

〉
.

Notice that the curl of F is also a three-dimensional vector field. It represents the
rotational tendency of F (which is generally different at different points). The direction of
the curl is the axis around which rotation tends to occur (counterclockwise as viewed from
the arrow end of the vector), and the magnitude is the strength of the rotational tendency.
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Example: If F = 〈P (x, y), Q(x, y), 0〉, then F is essentially a two-dimensional vector
field 〈P (x, y), Q(x, y)〉 in the xy plane, lifted into three dimensions. Since P and Q are
functions of x and y, their partial derivatives with respect to z are zero. The curl of F is

curl(F ) = ∇× 〈P,Q, 0〉 =

〈
0, 0,

∂Q

∂x
− ∂P

∂y

〉
.

The direction of the curl is either k or −k, so the rotational tendency of F is rotation
around a vertical axis, or in a horizontal plane. The magnitude of the curl, the strength of

the rotational tendency, is the absolute value of
∂Q

∂x
− ∂P

∂y
. We saw last time that this is

the rotational tendency of the two-dimensional vector field 〈P (x, y), Q(x, y)〉.
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Example: If F (x, y, z) = 〈z2, y2, x2〉, what is the curl of F?

∇× F =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

z2 y2 x2

∣∣∣∣∣∣∣∣∣∣∣∣
= 〈0, 2z − 2x, 0〉 .

Theorem: If f : R3 → R has continuous second partial derivatives, then ∇× (∇f) = ~0.

Another way to say this:
If F is a conservative three-dimensional vector field whose components have continuous

partial derivatives, then curl(F ) = ~0.

Proof: This follows from Clairaut’s Theorem: The components of ∇× (∇f) are differ-
ences of corresponding mixed second partials of f .

Theorem: If F is a three-dimensional vector field on a simply connected open region, the
components of F have continuous partial derivatives, and curl(F ) = ~0, then F is conservative.

Proof: We proved the two-dimensional version of this using Green’s Theorem. This ver-
sion follows from Stokes’ Theorem, which is a three-dimensional version of Green’s Theorem,
in the same way. We will see Stokes’ Theorem later.
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Example: Determine whether F (x, y, z) = 〈y, x, z2〉 is conservative. If it is, find a
potential function.

curl(F ) =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

y x z2

∣∣∣∣∣∣∣∣∣∣∣∣
= 〈0, 0, 0〉 .

Therefore F is conservative.

To find a potential function:

fx = y

f = xy + g(y, z)

fy = x+ gy(y, z) = x

gy(y, z) = 0

g(y, z) = h(z)

f = xy + h(z)

fz = h′(z) = z2

h(z) =
z3

3
+ C

f = xy +
z3

3
+ C

We can take C = 0. A potential function is −f = −xy − z3

3
.

Definition: A vector field whose curl is ~0 is called irrotational.

It makes physical sense that a conservative vector field should be irrotational. For ex-
ample, a gravitational field is conservative; it has a potential energy function, and the force
acts in the direction from high potential to low potential. Imagine an object — like a paddle
wheel — fixed in one place but free to spin. For gravity to impart a rotational tendency
would be bizarre.
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Definition: The divergence of a vector field F is

divergence(F ) = ∇ · F.

∇ · 〈P,Q,R〉 =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
.

Note that if F is a vector field, its curl ∇ × F is a vector function, but its divergence
∇ · f is a scalar function.

Theorem: If F = 〈P,Q,R〉 and the components of F have continuous second partial
derivatives, then ∇ · (∇× F ) = 0.

Proof: This follows from Clairaut’s Theorem.

Example: Is the vector field F (x, y, z) = 〈−y, x, z2〉 the curl of some other vector field?

Check its divergence:

∇ · F =
∂(−y)

∂x
+
∂x

∂y
+
∂(z2)

∂z
= 2z.

Because the divergence is not 0, we cannot write F as a curl.

Note: We are not claiming, in this course, that if the divergence of F is zero then F can
be written as a curl. However, under appropriate assumptions (including that the region in
question is simply connected), this is true.

If we view F as a fluid flow field, the divergence ∇ · F gives the expansionary tendency
of the flow.

Definition: If ∇ · F = 0, then F is called incompressible.
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Note: Provided everything in sight is sufficiently differentiable, Clairaut’s Theorem tells
us that

∇× (∇f) = ~0

∇ · (∇× F ) = 0.

However, this does not mean we always get zero by applying ∇ twice. It is quite possible to
have, for example,

∇× (∇× F ) 6= ~0

∇ · (∇f) 6= 0,

while, for example,
∇ · (∇ · F )

doesn’t even make sense.

Example: If f(x, y, z) = x2 + y2 + z2 then

∇ · (∇f) = ∇ · 〈2x, 2y, 2z〉 = 2 + 2 + 2 = 6.

Definition: We write
∇2 = ∇ · ∇,

so ∇2f = ∇ · (∇f). The partial differential equation

∇2f = 0

is called Laplace’s equation, and ∇2 is called the Laplace operator.
Laplace’s equation is important in physics. For example, if f(x, y, z) denotes the tem-

perature at a point (x, y, z), and f satisfies Laplace’s equation, then this is a steady state
temperature distribution.

Heat flows from regions of high temperature to regions of low temperature; the heat flow
is (some constant multiple of) −∇f . If the divergence of this flow is zero, that means that
heat flowing into a region equals heat flowing out, and temperature remains unchanged.
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Vector Forms of Green’s Theorem:

Suppose that D is a region in the xy plane, P and Q are functions of x and y, and D, P ,
and Q satisfy Green’s Theorem. We can view the xy-plane as sitting inside R3, and write
F = 〈P,Q, 0〉. Then we have

curl(F ) = ∇× F =

〈
0, 0,

∂Q

∂x
− ∂P

∂y

〉
∫
∂D

F · T ds =

∫
∂D

P dx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫∫
D

curl(F ) · k dA.

That is, the line integral of the tangential component of F around the boundary of D equals
the integral of the vertical component of the curl of F over D.

(The vertical component is normal to the horizontal plane containing D. The component
of a vector function normal to a surface, integrated over that surface, will show up again
later.)

We can also integrate the normal component of F around the boundary of D: Let ~n be
the unit vector normal to ∂D and pointing outward from D. Then we have:

~T ds = 〈dx, dy〉 ~n ds = 〈dy,−dx〉 .∫
∂D

F · ~n ds =

∫
∂D

〈P,Q〉 · 〈dy,−dx〉 =

∫
∂D

(−Q) dx+ P dy.

Applying Green’s theorem to 〈−Q,P 〉, this is∫∫
D

(
∂P

∂x
+
∂Q

∂y

)
dA =

∫∫
D

∇ · F dA.

That is, the line integral of the normal component of F around the boundary of D equals
the integral of the divergence of F over D.
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If F is a fluid flow field, then the line integral of the normal component F around the
boundary of D represents the net rate of flow out of the region D.

The picture below illustrates this.
The horizontal green arrow represents a small displacement along the oriented curve ∂D

of length ds.
The vertical black arrow represents a normal vector ~n ds of length ds.
The slanted red arrow represents F , as do the slanted sides of the parallelogram. The

normal component of F is F · ~n = |F | cos θ, or the height of the illustrated parallelogram.
If F is the velocity of fluid flow, then a particle of fluid moves in one unit of time from

the beginning to the end of the red arrow representing F . Notice that it crosses the green
arrow, and ends up inside the parallelogram.

The fluid inside the parallelogram is all the fluid that crossed the green arrow during the
last unit of time. The area of the parallelogram, which is

(ds)(height) = F · ~n ds,

is the amount of fluid that flows over that green arrow during one unit of time. That is, it
is the rate of flow across the green portion of ∂D.

θ

~n ds

~T ds

To find the rate of flow across all of ∂D, we add up the rates of flow across all its
infinitesimal pieces, by taking the integral∫

∂D

F · n ds.

If this is positive, then the net flow across the boundary of D is outward; if it is negative,
the net flow is inward.

A region on which ∇ ·F > 0 is a fluid source, and one on which ∇ ·F < 0 is a fluid sink.
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Example: Let F (x, y) = 〈x, y〉 and D be the unit disc. Then ∂D is the counterclockwise
unit circle, which we can parametrize by x = cos t, y = sin t, 0 ≤ t ≤ 2π.∫∫

D

∇ · F dA =

∫∫
D

(
∂(x)

∂x
+
∂(y)

∂y

)
dA =

∫∫
D

2 dA = 2π.∫
∂D

F · ~n ds =

∫
∂D

〈x, y〉 · 〈dy,−dx〉 =

∫
∂D

−x dy + y dx =∫ 2π

0

− cos t(− cos t dt) + sin t(sin t dt) =

∫ 2π

0

1 dt = 2π.

Example: Let D be the same region, and

G(x, y) =

〈
x

x2 + y2
,

y

x2 + y2

〉
.

Then∫
∂D

G · ~n ds =

∫
∂D

〈
x

x2 + y2
,

y

x2 + y2

〉
· 〈dy,−dx〉 =

∫
∂D

− x

x2 + y2
dy +

y

x2 + y2
dx =

∫ 2π

0

− cos t(− cos t dt) + sin t(sin t dt) =

∫ 2π

0

1 dt = 2π.

We can check that ∇ ·G = 0 at every point except the origin, at which G is not defined.

We can picture these examples by imagining the unit disc as the top of a round table
over which a thin film of water is flowing, flowing out over the unit circle at the edge at a
rate of 2π units per second. In both cases, the direction of flow is directly away from the
origin.

In the first case, the divergence of F has a constant value of 2. This means that the
source of fluid is evenly distributed over the table top. Perhaps it is raining.

In the second case, the divergence of G is zero, except at the origin, where there is a
discontinuity. All the fluid must be originating from the origin. It looks like we have a
fountain here.

You can check that if γ is any circle around the origin, the rate of flow of F across γ
equals twice the area enclosed by γ, and the rate of flow of G across γ equals 2π.
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Example: Find the divergence and the curl of the vector function

F (x, y, z) = 〈x sin y, x cos y, xyz〉 .

Is F conservative? Can F be written as the curl of some vector field?

Example: If f : R3 → R and F : R3 → R3, identify each of the following expressions as
representing a vector field, representing a scalar field, or meaningless.

Which of these, provided everything is sufficiently differentiable, are necessarily zero?

div(grad(f)) div(grad(F ))

div(curl(f)) div(curl(F ))

div(div(f)) div(div(F ))

grad(grad(f)) grad(grad(F ))

grad(curl(f)) grad(curl(F ))

grad(div(f)) grad(div(F ))

curl(grad(f)) curl(grad(F ))

curl(curl(f)) curl(curl(F ))

curl(div(f)) curl(div(F ))
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Example: Suppose F (x, y) = 〈x2, y2〉 and D is the region in R2 bounded by the curves
y = x2 and y = 1. Find ∫

∂D

F · ~n ds

in two ways, by directly evaluating the line integral and by using Green’s Theorem.
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