
Math 11
Fall 2016
Section 1

Monday, October 31, 2016

First, some important points from the last class:

For a continuous vector field F on an open connected region D, we consider the following
properties:

(1.) F is conservative (F is a gradient field) on D.

(2.)

∫
γ

F · d~r is path independent on D. This means that if γ and ψ are two oriented

curves in D with the same starting and ending points, then

∫
γ

F · d~r =

∫
ψ

F · d~r.

(3.) If γ is a smooth closed curve in D (closed means its end point equals its beginning

point), then

∫
γ

F · d~r = 0.

(4.) F respects the Clairaut Theorem conditions: If F = 〈P,Q〉, then Py = Qx. If
F = 〈P,Q,R〉, then Py = Qx, Pz = Rx, and Qz = Ry.

(1) =⇒ (2) by the Fundamental Theorem of Line Integrals.

(2) ⇐⇒ (3), because if γ and ψ have the same beginning and ending point, then
γ + (−ψ) (which means γ followed by ψ in the reverse direction) is closed.

(1) =⇒ (4), provided the components of F have continuous partial derivatives, by
Clairaut’s Theorem.

(2) =⇒ (1): Choose a point ~x0 in D, and define f(~x) =

∫
γ

F · d~r, where γ is any

curve in D from ~x0 to ~x. This makes sense as a definition because the line integral is path
independent. Prove ∇f = F .

(4) =⇒ (3), providedD is a simply connected (no holes) region in R2 and the components
of F have continuous partial derivatives. This will follow from Green’s Theorem.

Definition: The kinetic energy of an object of mass m moving at speed
ds

dt
is
m

2

(
ds

dt

)2

.

Theorem: If F is the total force acting on an object moving along γ, the work done by
F is equal to the change in kinetic energy.

Theorem: If F is a conservative force and F is the only force acting on an object moving
along γ, then the net increase in kinetic energy equals the net decrease in potential energy.

kinetic energy + potential energy = constant.
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Definition: A curve γ is closed if its beginning point equals its end point, simple if it
does not cross itself, and piecewise smooth if it can be divided into finitely many smooth
curves.

Definition: If D is a closed, simply connected region in R2 and γ is the boundary of D,
the positive orientation on γ circles D counterclockwise.

Another way to say this is that when moving along γ in the direction of the orientation,
the inside of the region D is on your left. If D is not simply connected, this gives the correct
positive orientation on curves bounding holes in D as well:

Green’s Theorem: If F = 〈P,Q〉 is a vector field on an open region E that includes
a closed region D that is both Type I and Type II (or can be divided into finitely many
such regions), the components of F have continuous partial derivatives on E, and ∂D is the
positively-oriented boundary of D, then∫

∂D

P dx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA.

We use Green’s Theorem to prove (4) =⇒ (3), provided D is a simply connected (no
holes) region in R2 and the components of F have continuous partial derivatives.

For simplicity, assume γ is a simple closed curve, so we can view γ as the boundary of
some region D, perhaps with the negative orientation.

(4) says that F = 〈P,Q〉 respects the Clairaut Theorem conditions:
∂P

∂y
=
∂Q

∂x
.

By Green’s Theorem, then,∫
γ

F · d~r = ±
∫
∂D

P dx+Qdy = ±
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA = ±

∫∫
D

(0) dA = 0.
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There are at least three different ways to use Green’s Theorem to evaluate integrals:

Evaluate a line integral around a closed curve by instead evaluating a double integral.

Evaluate a double integral by instead evaluating a line integral around a closed curve.

Evaluate a line integral by instead evaluating a different line integral and a double inte-
gral.

Example: Use Green’s Theorem to evaluate∫
γ

F · d~r

where γ is the unit circle with the clockwise orientation, and

F (x, y) =
〈
y2 − xy + y, 2xy

〉
.

Set P (x, y) = y2 − xy + y and Q(x, y) = 2xy, and D to be the unit disc. The (positively
oriented) boundary of D is −γ. (This means γ with the opposite orientation.) Use Green’s
Theorem.

∫
γ

F · d~r =

∫
−∂D

P dx+Qdy = −
∫
∂D

P dx+Qdy = −
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA =

−
∫∫

D

((2y)− (2y − x+ 1)) dA = −
∫∫

D

x dA︸ ︷︷ ︸
0 by symmetry

+

∫∫
D

1 dA = 0 + area(D) = π.
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Example: Use Green’s Theorem to find the area of the region D enclosed by the curve

x
2
3 + y

2
3 = 1.

If we set
F (x, y) =

〈
−y

2
,
x

2

〉
= 〈P (x, y), Q(x, y)〉 ,

then we have
∂Q

∂x
− ∂P

∂y
= 1,

and so by Green’s Theorem, the area of D is∫∫
D

1 dA =

∫∫
D

∂Q

∂x
− ∂P

∂y
dA =

∫
∂D

P dx+Qdy =

∫
∂D

F · d~r.

We can parametrize the boundary of D:

x
2
3 + y

2
3 = 1.

(x
1
3 )2 + (y

1
3 )2 = 1.

(x
1
3 ) = cos t (y

1
3 ) = sin t 0 ≤ t ≤ 2π.

x = cos3 t y = sin3 t 0 ≤ t ≤ 2π.∫
∂D

F · d~r =

∫ 2π

0

〈
−sin3 t

2
,
cos3 t

2

〉
·
〈
−3(cos2 t)(sin t), 3(sin2 t)(cos t)

〉
dt =∫ 2π

0

3

2

(
(cos2 t)(sin4 t) + (cos4 t)(sin2 t)

)
dt =

3

2

∫ 2π

0

(cos2 t)(sin2 t)(sin2 t+ cos2 t) dt =

3

2

∫ 2π

0

(cos2 t)(sin2 t) dt =
3

2

∫ 2π

0

1 + cos(2t)

2

1− cos(2t)

2
dt =

3

2

∫ 2π

0

1− cos2(2t)

4
dt =

3

8

∫ 2π

0

1− 1 + cos(4t)

2
dt =

3

16

∫ 2π

0

1 + cos(4t) dt =
3π

8
.
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Example: Use Green’s Theorem to find∫
γ

〈
2xy, x2 + x

〉
· d~r,

where γ is the top half of the unit circle, oriented from left to right.

Let D be the top half of the unit disc, and ψ the portion of the x-axis from −1 to 1. Let
P = 2xy and Q = x2 + x. By Green’s Theorem,∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫
∂D

P dx+Qdy.

The left-hand side is ∫∫
D

((2x+ 1)− 2x) dA =

∫∫
D

1 dA =
π

2
.

The right-hand side is ∫
−γ

~F · d~r +

∫
ψ

~F · d~r.

On ψ we have y = 0 and dy = 0, so∫
ψ

F · d~r =

∫
ψ

P dx+Qdy =

∫
ψ

P dx =

∫ 1

−1
(2x(0)) dx = 0.

Substituting into our original equation, we have

π

2
=

∫
−γ

~F · d~r +

∫
ψ

~F · d~r =

∫
−γ

~F · d~r + 0 = −
∫
γ

~F · d~r.

∫
γ

~F · d~r = −π
2
.
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Proving Green’s Theorem:

Use the fact that D is a Type I region to show∫∫
D

−∂P
∂y

dA =

∫
∂D

P dx.

Let D be given by a ≤ x ≤ b and g(x) ≤ y ≤ h(x).

∫∫
D

−∂P
∂y

(x, y) dA = −
∫ b

a

∫ h(x)

g(x)

∂P

∂y
(x, y) dy dx = −

∫ b

a

(P (x, y))

∣∣∣∣∣
y=h(x)

y=g(x)

dx =

−
∫ b

a

(P (x, h(x))− P (x, g(x)) dx = −
∫ b

a

P (x, h(x)) dx+

∫ b

a

P (x, g(x)) dx.

We break up ∂D into four pieces.
The bottom edge of the boundary γ1 is parametrized by ~r(t) = 〈t, g(t)〉 for a ≤ t ≤ b.

Then ~r (t) = 〈1, g′(t)〉 and∫
γ1

F · d~r =

∫ b

a

〈P (t, g(t)), 0〉 · 〈1, g′(t)〉 dt =

∫ b

a

P (t, g(t)) dt =

∫ b

a

P (x, g(x)) dx.

Another way to do the bottom edge:∫
γ1

F · d~r =

∫
γ1

〈P (x, y), 0〉 · 〈dx, dy〉 =

∫
γ1

P (x, y) dx =

∫ b

a

P (x, g(x)) dx.

In the same way, on the top edge γ2 (which is oriented from right to left, hence the minus
sign) we get ∫

γ2

F · d~r = −
∫ b

a

P (x, h(x)) dx.

On the left and right edges, we have dx = 0.
Putting this together,∫
∂D

P dx =

∫
γ1

P dx+

∫
γ2

P dx =

∫ b

a

P (x, g(x)) dx−
∫ b

a

P (x, h(x)) dx =

∫∫
D

−∂P
∂y

dA.
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Example: Let

F (x, y) =

〈
−y

x2 + y2
,

x

x2 + y2

〉
.

This vector field is not defined at the origin. It satisfies the Clairaut Theorem equations at
every point at which it is defined.

Use Green’s Theorem to show that if γ is any simple closed curve that circles the origin
once counterclockwise, then ∫

γ

F · d~r = 2π.

Let ψ be a circle of radius a centered at the origin, oriented counterclockwise, where a is
so large that γ lies inside the disc with boundary ψ. Let D be the region between γ and ψ.
Then the boundary of D is ψ + (−γ). By Green’s Theorem,∫

∂D

F · d~r =

∫∫
D

(
∂

∂x

(
x

x2 + y2

)
− ∂

∂y

(
−y

x2 + y2

))
=

∫∫
D

0 dA = 0.

Now we have

0 =

∫
∂D

F · d~r =

∫
ψ+(−γ)

F · d~r =

∫
ψ

F · d~r =

∫
γ

F · d~r.∫
γ

F · d~r =

∫
ψ

F · d~r.

We can evaluate the second line integral by parametrizing ψ with x = a cos t, y = a cos t,
0 ≤ t ≤ 2π. Then∫
ψ

〈
−y

x2 + y2
,

x

x2 + y2

〉
·d~r =

∫ 2π

0

〈
−a sin t

a2
,
a cos t

a2

〉
·〈−a sin t, a cos t〉 dt =

∫ 2π

0

a2

a2
dt = 2π.
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Interpreting Green’s Theorem:

Consider F = 〈P,Q〉 = 〈P, 0〉+ 〈0, Q〉. We will look at the two parts separately.

The first piece 〈P, 0〉 is a vector field whose vectors are always parallel to the x-axis. We
can think of this as a fluid flow field, with fluid moving parallel to the x-axis.

Suppose
∂P

∂y
> 0. That means that, at any point, fluid above that point (in the positive

y-direction) is moving to the right faster than fluid below that point. (This supposes P > 0.
If P < 0, fluid above that point is moving to the left slower than fluid below that point.)

Now imagine a small paddle wheel fixed to the xy-plane, and free to turn clockwise or
counterclockwise. Since fluid on the top part of the wheel is moving to the right faster than
fluid on the bottom part, the net effect is a tendency for the top part of the wheel to move
right — that is, a tendency for the wheel to turn clockwise.

By the same reasoning, if
∂Q

∂x
> 0, the flow field 〈0, Q〉 produces a tendency for the wheel

to turn counterclockwise.

Putting this together,
∂Q

∂x
− ∂P

∂y
is the counterclockwise rotational tendency produced

by the vector field F . If
∂Q

∂x
− ∂P

∂y
> 0 on D, then overall F produces a counterclockwise

rotational tendency. By Green’s Theorem, we also have

∫
∂D

F · d~r > 0, meaning that overall

F acts in the direction of counterclockwise motion around the boundary of D. This makes
intuitive sense.

The integral

∫
∂D

F · d~r is sometimes called the circulation of F around ∂D. Green’s

Theorem says that the circulation of F around the boundary of D is the same as the integral
of the counterclockwise rotational tendency of F over D.

There is a second interpretation of Green’s Theorem, which we will see later. There are
two different three-dimensional analogues of Green’s Theorem, associated with these two
different interpretations.

The analogue associated with this interpretation is Stokes’ Theorem, which says that if
S is a nice surface in R3 whose boundary is a closed curve γ in R3, and F is a vector field in

R3, then

∫
γ

F · d~r equals the integral over S of the rotational tendency produced by F . This

rotational tendency is actually a vector (indicating the direction of the axis of rotation as
well as the magnitude of the rotational tendency). We are about to learn how this rotational
tendency is defined, and how to integrate over a surface in three dimensions.
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Example: Use Green’s Theorem to find the area of the quadrilateral with vertices (2, 1),
(−1, 3), (2,−1), and (−2,−2). Note that there are three natural choices for 〈P,Q〉 that give
∂Q

∂x
− ∂P

∂y
= 1: 〈−y, 0〉, 〈0, x〉, and

〈
−y
2
,
x

2

〉
.
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Example: Verify Green’s Theorem for the vector field

F (x, y) = 〈x− y, x+ y〉

and the region D defined by (x
a

)2
+
(y
b

)2
≤ 1.

(Green’s Theorem states that two integrals are equal. To verify it in this case means to
evaluate each integral directly, and check that you get the same value for both.)
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