Math 11 Fall 2016 Section 1 Friday, October 28, 2016

First, some important points from the last class (and a few from the one before):

Definition: An *n*-dimensional vector field is a function $F : \mathbb{R}^n \to \mathbb{R}^n$. We think of it as assigning to each point in *n*-dimensional space a vector in *n*-dimensional space. Our go-to examples will generally be force fields, fluid flow fields, and gradient fields.

A vector field F is called *conservative* if it is a gradient field. If we write $F = -\nabla f$, then f is a *potential function* for f.

If F is a force field, so F(x, y, z) is the force exerted on an object when it is at point (x, y, z), and an object moves along the oriented curve γ , then the work done by that force on that object is the line integral of F along γ , $W = \int_{\gamma} F \cdot d\vec{r}$. This integral is dependent on orientation but independent of parametrization. The line integral $\int_{\gamma} f \, ds$ of a scalar function f along γ is independent of both orientation and parametrization.

If $\vec{r}(t) = \langle x(t), y(t) \rangle$ parametrizes γ , then on γ :

element of arc length $= ds = |\vec{r}'(t)| dt$ dx = x'(t) dt dy = y'(t) dt

These differentials are scalars. The following differentials are vectors:

element of displacement
$$= d\vec{r} = \vec{r}'(t) dt = \langle x'(t), y'(t) \rangle dt = \langle x'(t) dt, y'(t) dy \rangle = \langle dx, dy \rangle$$

$$d\vec{r} = \vec{r}'(t) \, dt = \left(\frac{1}{|\vec{r}'(t)|} \vec{r}'(t)\right) \left(|\vec{r}'(t)| \, dt\right) = \vec{T} \, ds$$

The Fundamental Theorem of Line Integrals: Suppose γ is a smooth curve, and f a function with continuous derivative. Then

$$\int_{\gamma} \nabla f \cdot d\vec{r} = f(\text{end}(\gamma)) - f(\text{start}(\gamma)) = \text{ net change in } f \text{ along } \gamma$$

Example: Show that $F(x, y) = \langle -y, x \rangle$ is not conservative.

If we had $F = \nabla f$, we would have

$$f_x(x,y) = -y \qquad f_y(x,y) = x$$
$$f_y(x,y) = 1 \qquad f_y(x,y) = 1$$

$$f_{xy}(x,y) = -1$$
 $f_{yx}(x,y) = 1$,

which contradicts Clairaut's Theorem.

Suppose we tried to find a potential function. We would get:

$$f_x(x,y) = -y$$
 and $f_y(x,y) = x$.

Differentiating the first equation with respect to x, remembering the constant of integration is a function of y:

$$f(x,y) = -xy + g(y).$$

Differentiating with respect to y:

$$f_y(x,y) = -x + g'(y)$$
 and so $-x + g'(y) = x$

This would mean g'(y) = 2x, but 2x is not a function of y. This tells us our task is impossible; F is not conservative.

Example: The vector field $F(x, y) = \left\langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle$ is not conservative on \mathbb{R}^2 , but it is conservative on the half plane x > 0. Suppose that γ is the straight line from (1, 0) to (3, 3). Without finding a potential function for F, find

$$\int_{\gamma} F \cdot d\vec{r}.$$

We know $F = \nabla f$ for some unknown f, for which we have

$$\int_{\gamma} F \cdot d\vec{r} = f(3,3) - f(1,0).$$

Suppose that ψ is the curve that goes in a straight line from (1,0) to $(3\sqrt{2},0)$, and then along a circle around the origin to (3,3). Then

$$\int_{\psi} F \cdot d\vec{r} = f(3,3) - f(1,0) = \int_{\gamma} F \cdot d\vec{r}.$$

It is easier to integrate F along ψ . Let ψ_1 be the straight line from (1,0) to $(3\sqrt{2},0)$, and ψ_2 be the circular arc from $(3\sqrt{2},0)$ to (3,3). Then

$$\int_{\psi} F \cdot d\vec{r} = \int_{\psi_1} F \cdot d\vec{r} + \int_{\psi_2} F \cdot d\vec{r} = \int_{\psi_1} F \cdot \vec{T} \, ds + \int_{\psi_2} F \cdot \vec{T} \, ds.$$

Along ψ_1 we have $T = \langle 1, 0 \rangle$ and y = 0, so $F = \langle 0, x^{-1} \rangle$ and $F \cdot \vec{T} = 0$. The line integral of F along ψ_1 is 0.

Along ψ_2 , we can see T and F have the same direction, and since T is a unit vector, we have

$$F \cdot \vec{T} = |F| |\vec{T}| \cos \theta = |F| = \left| \left\langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle \right| = \frac{1}{\sqrt{x^2 + y^2}} = \frac{1}{3\sqrt{2}}$$

This is a constant, and integrated along ψ_2 with respect to arc length, it gives $\frac{1}{3\sqrt{2}}$ times the arc length of γ . Since γ is one eighth of a circle of radius $3\sqrt{2}$, its arc length is $\frac{\pi 3\sqrt{2}}{4}$ and the integral is $\frac{\pi}{4}$. Putting it all together:

$$\int_{\gamma} F \cdot d\vec{r} = \int_{\psi} F \cdot d\vec{r} = \int_{\psi_1} F \cdot \vec{T} \, ds + \int_{\psi_2} F \cdot \vec{T} \, ds = 0 + \frac{\pi}{4} = \frac{\pi}{4}.$$

Note: You can check that for x > 0 we have $F = \nabla f$, where $f(x, y) = \tan^{-1}\left(\frac{y}{x}\right)$. That is, $f = \theta$ (the θ of polar coordinates). The integral of F along γ is the net change in θ from (1,0) to (3,3). It makes sense that we can't express F as a gradient on \mathbb{R}^2 (or even on all of \mathbb{R}^2 except the origin), because there is no way to choose θ continuously.

Just for practice, let's show directly that if γ is the arc of a circle around the origin from $\theta = \theta_1$ to $\theta = \theta_2$, then the line integral of $F(x, y) = \left\langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle$ along γ equals $\theta_2 - \theta_1$.

Let c be the radius of the circle. The circle has polar coordinate equation r = c and the beginning and ending points of γ have polar coordinates (c, θ_1) and (c, θ_2) . We can parametrize γ by $x = c \cos t$ and $y = c \sin t$ for $\theta_1 \le t \le \theta_2$. Then

$$\vec{r}(t) = \langle c\cos t, c\sin t \rangle \qquad \vec{r}'(t) = \langle -c\sin t, c\cos t \rangle \qquad F(\vec{r}(t)) = \left\langle \frac{-c\sin t}{c^2}, \frac{c\cos t}{c^2} \right\rangle$$
$$\int_{\gamma} F \cdot d\vec{r} = \int_{\theta_1}^{\theta_2} F(\vec{r}(t)) \cdot \vec{r}'(t) \, dt = \int_{\theta_1}^{\theta_2} \left\langle \frac{-c\sin t}{c^2}, \frac{c\cos t}{c^2} \right\rangle \cdot \langle -c\sin t, c\cos t \rangle \, dt =$$
$$\int_{\theta_1}^{\theta_2} \frac{c^2\sin^2(t) + c^2\cos^2(t)}{c^2} \, dt = \int_{\theta_1}^{\theta_2} 1 \, dt = \theta_2 - \theta_1.$$

Notice that if we let c = 1, $\theta_1 = 0$ and $\theta_2 = 2\pi$, then γ is the unit circle oriented counterclockwise from (1,0) around to (1,0) again, and we get

$$\int_{\gamma} F \cdot d\vec{r} = 2\pi.$$

If we had $F = \nabla f$, the Fundamental Theorem of Line Integrals would tell us that

$$\int_{\gamma} F \cdot d\vec{r} = \int_{\gamma} \nabla f \cdot d\vec{r} = f(1,0) - f(1,0) = 0.$$

Since $2\pi \neq 0$, this tells us that F is not a conservative vector field on any open region containing the entire unit circle.

Note: We can check that $F = \nabla f$ would not violate Clairaut's Theorem for this function:

$$\frac{\partial}{\partial x}\left(\frac{x}{x^2+y^2}\right) = \frac{y^2-x^2}{x^2+y^2} = \frac{\partial}{\partial y}\left(\frac{-y}{x^2+y^2}\right).$$

Theorem: If the continuous vector field F is conservative (meaning $F = \nabla f$) on an open connected region D (connected means any two points in D can be connected via a curve in D), then:

- 1. $\int_{\gamma} F \cdot d\vec{r}$ is *path independent* on *D*. This means that if γ and ψ are two oriented curves in *D* with the same starting and ending points, then the line integrals of *F* along γ and along ψ are equal.
- 2. If γ is a smooth closed curve in D (closed means its end point equals its beginning point), then $\int_{\gamma} F \cdot d\vec{r} = 0$.
- 3. If the components of F have continuous partial derivatives, then F respects the Clairaut Theorem conditions: If $F = \langle P, Q \rangle$, then $P_y = Q_x$. If $F = \langle P, Q, R \rangle$, then $P_y = Q_x$, $P_z = R_x$, and $Q_z = R_y$.

Proof: Parts (1) and (2) follow from the Fundamental Theorem of Line Integrals, and part (3) from Clairaut's Theorem.

Theorem: If F is a continuous vector field on an open connected region D, then if either (1) or (2) holds, it follows that F is conservative on D.

Proof: We'll see this a little later.

Note: (1) \iff (2) is not too hard to show, because if γ and ψ are two oriented curves in D with the same starting and ending points, then γ followed by $-\psi$ (meaning ψ in the opposite direction) is a closed curve.

Theorem: If F is a continuous vector field on an open, simply connected (no holes) region D in \mathbb{R}^2 , the component functions of F have continuous partial derivatives, and F respects the Clairaut Theorem conditions, then F is conservative on D.

Proof: Deferred until after we have proven Green's Theorem.

Note: The vector field $F(x,y) = \left\langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle$ is an example of why the "no holes" property is needed. F respects the Clairaut Theorem conditions on the region on which it is defined, which is all of \mathbb{R}^2 except the origin. But we know it is not conservative on that region, since the line integral of F around the unit circle does not equal zero. The problem is that the region on which F is defined has a hole at the origin.

Kinetic Energy:

Definition: The *kinetic energy* of an object of mass m moving at speed $\frac{ds}{dt}$ is $\frac{m}{2} \left(\frac{ds}{dt}\right)^2$.

Theorem: If F is the total force acting on an object moving along γ , the work done by F is equal to the change in kinetic energy.

Proof: Suppose the object's path is parametrized by $\vec{r}(t)$ for $a \leq t \leq b$. Then the object's acceleration at time t is $\vec{r}''(t)$. By Newton's Second Law, force equals mass times acceleration, we have

$$F(\vec{r}(t)) = m\vec{r}''(t).$$

Therefore the work done by F is

$$\int_{\gamma} F \cdot d\vec{r} = \int_{a}^{b} F(\vec{r}(t)) \cdot \vec{r}'(t) \, dt = \int_{a}^{b} m\vec{r}''(t) \cdot \vec{r}'(t) \, dt = \frac{m}{2} \int_{a}^{b} 2\vec{r}''(t) \cdot \vec{r}'(t) \, dt$$

We can check (using the dot product rule) that

$$\frac{d}{dt}\left(\vec{r}'(t)\cdot\vec{r}'(t)\right) = 2\vec{r}''(t)\cdot\vec{r}'(t)$$

Substituting into the equation above gives us

$$\int_{\gamma} F \cdot d\vec{r} = \frac{m}{2} \int_{a}^{b} \frac{d}{dt} \left(\vec{r}'(t) \cdot \vec{r}'(t) \right) dt = \frac{m}{2} \left(\vec{r}'(t) \cdot \vec{r}'(t) \right) \Big|_{t=a}^{t=b} = \frac{m}{2} \left| \vec{r}'(t) \right|^{2} \Big|_{t=a}^{t=b} = \frac{m}{2} \left(\frac{ds}{dt} \right)^{2} \Big|_{t=a}^{t=b}$$

But this is precisely the change in kinetic energy.

Theorem: If F is a conservative force $F = \nabla f$ with potential energy function -f, and F is the only force acting on an object moving along γ , then the net increase in kinetic energy equals the net decrease in potential energy. That is,

kinetic energy
$$+$$
 potential energy $=$ constant.

Proof: By the theorem, since F is the only force acting, the work done by F is the net increase in kinetic energy. By the Fundamental Theorem of Line Integrals, the work done by F is also the net increase in f, which is the net decrease in -f, or the net decrease in potential energy.

Theorem: If F is a continuous vector field on an open connected region D, and $\int_{\gamma} F \cdot d\vec{r}$ is path independent on D, then F is conservative on D.

Proof: We'll do the proof for \mathbb{R}^2 , but it works for any \mathbb{R}^n .

Let (x_0, y_0) be some point in D. We want to find a function f on D with $\nabla f = F$. Since we can add any constant we want without changing the gradient, we can specify that we want $f(x_0, y_0) = 0$.

Suppose (x, y) is another point in D, and γ is a smooth curve in D from (x_0, y_0) to (x, y). From the Fundamental Theorem of Line Integrals, we know that

$$\int_{\gamma} F \cdot d\vec{r} = \int_{\gamma} \nabla f \cdot d\vec{r} = f(x, y) - f(x_0, y_0) = f(x, y).$$

This tells us what f must be.

Define a function f on D by

$$f(x,y) = \int_{\gamma} F \cdot d\vec{r}$$
 where γ goes from (x_0, y_0) to (x, y) in D

Because the line integral gives the same value no matter what path we pick, it makes sense to define a function this way. We need to show that $\nabla f = F$.

Suppose $F(x,y) = \langle P(x,y), Q(x,y) \rangle$. We will show that $f_x(x,y) = P(x,y)$. The proof that $f_y(x,y) = Q(x,y)$ is the same.

$$f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}.$$

Let γ be a path from (x_0, y_0) to (x, y), and let ψ be the straight line from (x, y) to (x + h, y). Then $\gamma + \psi$ (this means γ followed by ψ) is a path from (x_0, y_0) to (x + h, y), and we have

$$f(x+h,y) - f(x,y) = \int_{\gamma+\psi} F \cdot d\vec{r} - \int_{\gamma} F \cdot d\vec{r} = \int_{\psi} F \cdot d\vec{r}.$$

Now to show

$$f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h} = P(x,y)$$

we need to show

$$\lim_{h \to 0} \left(\frac{1}{h} \int_{\psi} F \cdot d\vec{r} \right) = P(x, y).$$

To compute the line integral in this equation, we parametrize ψ by

$$\vec{r}(t) = \langle x+t, y \rangle$$
 $0 \le t \le h$ $d\vec{r} = \vec{r}'(t) dt = \langle 1, 0 \rangle dt.$

Then

$$\frac{1}{h}\int_{\psi}F\cdot d\vec{r} = \frac{1}{h}\int_{0}^{h} \langle P(x+t,y), Q(x+t,y)\rangle \cdot \langle 1,0\rangle \ dt = \frac{1}{h}\int_{0}^{h} P(x+t,y) \ dt.$$

If h is very small, then $P(x + t, y) \approx P(x, y)$ for every t between 0 and h, and so we have

$$\frac{1}{h} \int_0^h P(x+t,y) \, dt \approx \frac{1}{h} \int_0^h P(x,y) \, dt = \frac{1}{h} \left(hP(x,y) \right) = P(x,y).$$

In the limit,

$$\lim_{h \to 0} \left(\frac{1}{h} \int_{\psi} F \cdot d\vec{r} \right) = P(x, y).$$

This is what we needed to show.

This page is cultural enrichment.

To be more formal about that limit argument: To show

$$\lim_{h \to 0} \left(\frac{1}{h} \int_{\psi} F \cdot d\vec{r} \right) = P(x, y),$$

we need to show that for every $\varepsilon > 0$, there is a $\delta < 0$, such that whenever $|h| < \delta$ we have

$$\left| \left(\frac{1}{h} \int_{\psi} F \cdot d\vec{r} \right) - P(x, y) \right| < \varepsilon.$$

Because F is continuous, we can choose δ small enough so that whenever $|t| < \delta$ we have $|P(x+t,y) - P(x,y)| < \varepsilon$. That is to say,

$$P(x,y) - \varepsilon < P(x+t,y) < P(x,y) + \varepsilon.$$

Choose δ this small. Then whenever $|h| < \delta$ and t is between 0 and h, so also $|t| < \delta$, we have

$$P(x,y) - \varepsilon < P(x+t,y) < P(x,y) + \varepsilon.$$

This means we have

$$\int_0^h (P(x,y)-\varepsilon)\,dt < \int_0^h P(x+t,y)\,dt < \int_0^h (P(x,y)+\varepsilon)\,dt.$$

But in the integrals on the left and right we are integrating a constant (not a function of t), so we can evaluate those integrals.

$$\begin{split} h(P(x,y)-\varepsilon) &< \int_0^h P(x+t,y) \, dt < h(P(x,y)+\varepsilon) \\ (P(x,y)-\varepsilon) &< \frac{1}{h} \int_0^h P(x+t,y) \, dt < (P(x,y)+\varepsilon) \\ (P(x,y)-\varepsilon) &< \frac{1}{h} \int_{\psi} F \cdot d\vec{r} < (P(x,y)+\varepsilon) \\ & \left| \left(\frac{1}{h} \int_{\psi} F \cdot d\vec{r} \right) - P(x,y) \right| < \varepsilon. \end{split}$$

This is what we needed to show.

Warm-up for next time: Suppose D is a Type I region in the plane, given by $a \le x \le b$ and $g(x) \le y \le h(x)$, and P(x, y) is a function on D with continuous partial derivatives.

We look at what happens if we integrate $P_y(x, y)$ over D.

$$\iint_{D} P_{y}(x,y) \, dA = \int_{a}^{b} \int_{g(x)}^{h(x)} P_{y}(x,y) \, dy \, dx = \int_{a}^{b} \left(P(x,y) \right) \, \left| \begin{array}{c} y = h(x) \\ y = g(x) \end{array} \right|_{y=g(x)}^{y=h(x)} \, dx = \int_{a}^{b} \left(P(x,h(x)) - P(x,g(x)) \right) \, dx = \int_{a}^{b} P(x,h(x)) \, dx - \int_{a}^{b} P(x,g(x)) \, dx$$

Now we look at what happens if we integrate $F(x, y) = \langle P(x, y), 0 \rangle$ around the boundary of D, oriented counterclockwise:

We break up the boundary of D into four pieces.

The bottom edge of the boundary γ_1 is parametrized by $\vec{r}(t) = \langle t, g(t) \rangle$ for $a \leq t \leq b$. Then $\vec{r}(t) = \langle 1, g'(t) \rangle$ and

$$\int_{\gamma_1} F \cdot d\vec{r} = \int_a^b \left\langle P(t, g(t)), 0 \right\rangle \cdot \left\langle 1, g'(t) \right\rangle \, dt = \int_a^b P(t, g(t)) \, dt = \int_a^b P(x, g(x)) \, dx.$$

Another way to do the bottom edge:

$$\int_{\gamma_1} F \cdot d\vec{r} = \int_{\gamma_1} \langle P(x,y), 0 \rangle \cdot \langle dx, dy \rangle = \int_{\gamma_1} P(x,y) \, dx = \int_a^b P(x,g(x)) \, dx.$$

Example: In general, if γ and ψ are two different smooth curves starting and ending at the same points, and F is a vector field that is not conservative, then

$$\int_{\gamma} F \cdot \vec{T} \, ds \neq \int_{\psi} F \cdot \vec{T} \, ds.$$

Show this by evaluating both integrals when γ is the portion of the unit circle from (1,0) counterclockwise to (-1,0), and ψ is the straight line segment from (1,0) to (-1,0), and $F(x,y) = \langle -y, x \rangle$.

For practice, try evaluating each line integral in three different ways, first by parametrizing the curve and evaluating the line integral as $\int F \cdot d\vec{r}$, second by evaluating separately both pieces of the line integral in the form $\int P dx + Q dy$, and third by figuring out what $F \cdot \vec{T}$ is on the curve and using that to evaluate the line integral as $\int F \cdot \vec{T} ds$. **Example:** A force field is given by

$$F(x, y, z) = \langle y, 2x, y \rangle$$

and γ is the intersection of the surfaces $y = x^2$ and $z = x^3$.

Show that F is not conservative.

Find the work done by F on an object that moves along γ from (0,0,0) to (1,1,1).