
Math 11
Fall 2016
Section 1

Wednesday, September 14, 2016

First, some important points from the last class:

Three-dimensional coordinate system (x-axis points out of paper):

c

P

y
//

zOO

x ��

b

a

P = (a, b, c)

Distance from Q = (x1, y1, z1) to P = (x2, y2, z2) is

|QP | =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

R3 denotes 3-dimensional space, or the set of all triples (a, b, c) of real numbers.

Sphere of radius r with center (a, b, c):

(x− a)2 + (y − b)2 + (z − c)2 = r2
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Vectors are used to model anything that has magnitude (represented by the length of the
vector) and direction (represented by the direction of the vector).

Example: The displacement of an object moving from point P = (a1, b1, c1) to point
Q = (a2, b2, c2) is represented by the displacement vector 〈a2 − a1, b2 − b1, c2 − c1〉.

Vectors, vector addition, scalar multiplication, subtraction, magnitude (norm), and di-
rection have algebraic and geometric representations, and different meanings in different
applications.

Two arrows with the same length and direction are two pictures of the same vector.
Vector addition and subtraction follow parallelogram laws.
The norm (magnitude) of 〈a, b, c〉 is

| 〈a, b, c〉 | =
√
a2 + b2 + c2

Direction is generally given by a unit vector, a vector whose norm is 1.
Parallel vectors have the same or opposite directions; each is a scalar multiple of the

other.

Theorem: If ~v is a nonzero vector, the unit vector in the direction of ~v is

~u =
1

|~v|
~v.

Standard basis for R3:
{̂i, ĵ, , k̂}

î = 〈1, 0, 0〉

ĵ = 〈0, 1, 0〉

k̂ = 〈0, 0, 1〉

〈a, b, c〉 = âi+ bĵ + ck̂

Notation: Sometimes vectors are written with an arrow on top, ~v. Sometimes, instead,
they are written in boldface, v.

Sometimes the norm of the vector ~v is written |~v| instead of |~v|.
It is common, particularly in physics and engineering, to write the vector 〈a, b, c〉 as

âi+ bĵ + ck̂, or as ai + bj + ck, or as ax̂+ bŷ + cẑ.
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You may know from physics, “work equals force times distance.” However, it isn’t quite
that simple. If the force acts in the opposite direction to the motion, it does negative work.
(That is, work is done against the force.) If the force is perpendicular to the direction of
motion, it does no work at all. If the force is at an angle to the direction of motion, the work
depends on the component of the force parallel to the direction of motion.

Suppose an object acted on by force ~F moves in a straight line along vector ~d. (There

are also other forces acting on the object.) We are interested in the work done by ~F . Here
are two possible pictures.

~d

//

~F

::

~F

::

~Fp +3

~Fn

OO

//

~F

dd

~F

dd

~Fpks

~Fn

OO

~d

The force ~F can be expressed as the sum of two components, ~Fp parallel to the direction

of motion, and ~Fn normal (or perpendicular, or orthogonal) to the direction of motion. Only
~Fp does work on the moving object.

The vector ~Fp is called the vector projection of ~F on ~d (or in the direction of ~d). It is

sometimes called simply the projection of ~F on ~d.
The work done by ~F on our moving object is

W =


|~Fp| |~d| if ~Fp has the same direction as ~d;

−|~Fp| |~d| if ~Fp has the opposite direction from ~d.

The scalar projection of ~F on ~d, sometimes denoted proj ~d(
~F ), is the quantity

|~Fp| if ~Fp has the same direction as ~d;

−|~Fp| if ~Fp has the opposite direction from ~d.

W =
(
proj~d(

~F )
)
|~d|

It is sometimes called the component, or coordinate, of ~F in the direction of ~d.
“Work equals (scalar projection of force in the direction of motion) times distance.”
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Finding vector and scalar projections:

θ θ

//
~d

~F

??

~Fp

+3

~Fn

OO

ψ

~Fp

ks

~Fn

OO

//
~d

~F

__

If ~F makes an angle of θ with ~d, then the scalar projection of ~F onto ~d is

proj~d(
~F ) = |~F | cos(θ)

and in our case, the work done by ~F on our object is the scalar projection of ~F in the
direction of motion times the distance moved,

W = proj~d(
~F )|~d| = |~F | |~d| cos(θ).

The vector projection of ~F onto ~d has the same direction as ~d if the scalar projection is
positive, and the opposite direction if the scalar projection is negative.

Let ~u be a unit vector in the direction of ~d,

~u =
1

|~d|
~d.

Then the vector projection of ~F onto ~d his

−−→
proj ~d(

~F ) =
(
proj~d(

~F )
)
~u =

(
|~F | cos(θ)

)
~u =

(
|~F | cos(θ)

|~d|

)
~d
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There is a kind of product of vectors that helps us to compute these projections. The
dot product of two vectors is a scalar, defined by

~v · ~w = |~v| |~w| cos(θ),

where θ is the angle between ~v and ~w. (We’ll see an algebraic formula for the dot product
shortly.)

The dot product is sometimes called the scalar product, because the dot product of two
vectors is a scalar. This is not the same as scalar multiplication.

Example: If ~v and ~w are perpendicular to each other, then

~v · ~w = |~v| |~w| cos
(π

2

)
= 0.

If ~v and ~w have the same direction,

~v · ~w = |~v| |~w| cos (0) = |~v| |~w|,

and if they have opposite directions,

~v · ~w = |~v| |~w| cos (π) = −|~v| |~w|.

In particular,
~v · ~v = |~v|2.

We can use the dot product to rewrite our formulas:

If ~F makes an angle of θ with ~d, then the scalar projection of ~F onto ~d is

proj~d(
~F ) = |~F | cos(θ) =

|~F | |~d| cos(θ)

|~d|
=

~F · ~d
|~d|

and the vector projection of ~F onto ~d is

−−→
proj ~d(

~F ) =

(
|~F | cos(θ)

|~d|

)
~d =

(
|~F | |~d| cos(θ)

|~d|2

)
~d =

(
~F · ~d
~d · ~d

)
~d

The work done by force ~F on an object moving in a straight line with displacement ~d is

W = ~F · ~d

“Work equals force dot displacement.”
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Algebra of the dot product:

〈a1, a2, a3〉 · 〈b1, b2, b3〉 = a1b1 + a2b2 + a3b3

See the textbook for a proof of this formula using the Law of Cosines. In particular,

〈a1, a2, a3〉 · 〈a1, a2, a3〉 = a21 + a22 + a23 = | 〈a1, a2, a3〉 |2.

The corresponding formulas work in R2 (and in Rn) as well.

Theorem (basic facts about dot products):

~v · ~w = |~v| |~w| cos(θ),

where θ is the angle between ~v and ~w.

~v · ~w = ~w · ~v

~v · (~w + ~u) = (~v · ~w) + (~v · ~u)

~v · (~w − ~u) = (~v · ~w)− (~v · ~u)

(t~v) · ~w = t(~v · ~w) = ~v · (t~w)

~0 · ~v = 0

~v · ~v = |~v|2

Questions:

We know that, if ~v and ~w are nonzero vectors, then ~v · ~w = 0 means that ~v and ~w are
orthogonal (perpendicular to each other). What does ~v · ~w > 0 mean geometrically?

The angle between ~v and ~w is acute.

The first theorem on this page includes a commutative law for dot products:

~v · ~w = ~w · ~v

Is there an associative law for dot products, (~v · (~u · ~w) = (~v · ~u) · ~w)? Why or why not?

No. (~u · ~w) is a number, and you cannot take the dot product of a vector and a number,
so the expression ~v · (~u · ~w) doesn’t make sense.
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Example: Find the vector and scalar projections of the vector ~v = 〈−1,−1,−2〉 in the
direction of the vector ~w = 〈3, 4, 12〉.

~v · ~w = (−1)(3) + (−1)(4) + (−2)(12) = −31

proj~w(~v) =
~v · ~w
|~w|

=
−31√

32 + 42 + 122
=
−31

13
.

−−→
proj ~w(~v) =

~v · ~w
|~w|2

~w =
−31

169
〈3, 4, 12〉 =

〈
−93

169
,
−124

169
,
−372

169

〉
.

Example: TRUE or FALSE?

If ~u is a unit vector, then the scalar projection of ~v on ~u is just ~v · ~u, and the
vector projection of ~v on ~u is just (~v · ~u) ~u.

Explain.

True in both cases. Since |~u| = 1:

proj~u(~v) =
~v · ~u
|~u|

=
~v · ~u

1
= ~v · ~u;

−−→
proj ~w(~u) =

~v · ~w
|~u|2

~u =
~v · ~w

1
~u = (~v · ~u) ~u.
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Definition: The cross product, or vector product, of vectors ~v and ~w is the vector ~v× ~w
with the following properties:

1. |~v × ~w| = |~v| |~w| sin(θ) where θ is the angle between ~v and ~w.

2. ~v × ~w is perpendicular to both ~v and ~w.

3. ~v, ~w and ~v × ~w are oriented according to the right-hand rule: If all three vectors are
drawn from the same point, and you are looking down from the top of ~v× ~w, rotating
from ~v around to ~w appears as a counterclockwise rotation.

Note: The cross product is defined only in R3.

~w

KK

~v

::

~v × ~w points out of the paper. ~w × ~v points into the paper.

Three other ways to remember the right-hand rule:

Point the thumb of your right hand in the direction of ~v × ~w. The fingers curl in the
direction of rotation from ~v to ~w.

Hold your arms out parallel to the ground and pointing slightly forwards, at an angle to
each other. If your right hand points in the direction of the first vector ~v and your left hand
points in the direction of the second vector ~w, then your head points in the direction of the
vector ~v × ~w. (Provided, of course, that you haven’t crossed your arms.)

The vectors ~v, ~w, and ~v × ~w, in that order, are oriented in the same way as î, ĵ, and k̂,
in that order. And, in fact, î× ĵ = k̂.

Example: Find the vector k̂ × ĵ.

Since k̂ and k̂ are unit vectors and the sine of the angle between them is 1, by the
geometric interpretation of the cross product, k̂ × ĵ must be a unit vector perpendicular to
them both. That is, it must be either î or −î. Using the right-hand rule, we see k̂× ĵ = −î.
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Algebra of the cross product.

The determinant of a matrix will help us compute cross products without getting too
mixed up.

det

(
a b
c d

)
=

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc.

det

a1 a2 a3
b1 b2 b3
c1 c2 c3

 =

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ = a1

∣∣∣∣b2 b3
c2 c3

∣∣∣∣︸ ︷︷ ︸
∗∗∗

− a2
∣∣∣∣b1 b3
c1 c3

∣∣∣∣+ a3

∣∣∣∣b1 b2
c1 c2

∣∣∣∣
*** is the determinant of the matrix left when you cross out the row and column of a1.

Notice the alternating + and − signs.

The matrix determinant has many useful applications. We’re going to use it in the
formula for cross product:

〈v1, v2, v3〉 × 〈w1, w2, w3〉 =

∣∣∣∣∣∣
î ĵ k̂
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ =

∣∣∣∣v2 v3
w2 w3

∣∣∣∣ î− ∣∣∣∣v1 v3
w1 w3

∣∣∣∣ ĵ +

∣∣∣∣v1 v2
w1 w2

∣∣∣∣ k̂ =

〈v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1〉 .

Example:

k̂ × ĵ =

∣∣∣∣∣∣
î ĵ k̂
0 0 1
0 1 0

∣∣∣∣∣∣ =

∣∣∣∣0 1
1 0

∣∣∣∣ î− ∣∣∣∣0 1
0 0

∣∣∣∣ ĵ +

∣∣∣∣0 0
0 1

∣∣∣∣ k̂ =

((0)(0)− (1)(1))̂i− ((0)(0)− (0)(1))ĵ + ((0)(1)− (0)(0))k̂ = −î

Example: Compute 〈1, 2, 1〉 × 〈1, 0,−1〉. Use the dot product to check that the cross
product is orthogonal to both factors.

〈1, 2, 1〉 × 〈1, 0,−1〉 =

∣∣∣∣∣∣
î ĵ k̂
1 2 1
1 0 −1

∣∣∣∣∣∣ =

∣∣∣∣2 1
0 −1

∣∣∣∣ î− ∣∣∣∣1 1
1 −1

∣∣∣∣ ĵ +

∣∣∣∣1 2
1 0

∣∣∣∣ k̂ =

(−2)̂i− (−2)ĵ + (−2)k̂ = 〈−2, 2, −2〉 .

Check: 〈1, 2, 1〉 · 〈−2, 2,−2〉 = −2 + 4− 2 = 0 and 〈1, 0,−1〉 · 〈−2, 2,−2〉 = −2 + 0 + 2 = 0.
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Theorem: |~v × ~w| is the area of the parallelogram with sides ~v and ~w.

Theorem:
~v × ~w = −(~w × ~v)

t(~v × ~w) = t~v × ~w = ~v × t~w

~v × (~w + ~u) = (~v × ~w) + (~v × ~u)

~v × (~w × ~u) = (~v · ~u)~w − (~v · ~w)~u

Warning; The cross product is NOT commutative and NOT associative.

Definition: The triple product of ~v = 〈v1, v2, v3〉, ~w = 〈w1, w2, w3〉, and ~u = 〈u1, u2, u3〉,
in that order, is

~v · (~w × ~u) = (~v × ~w) · ~u =

∣∣∣∣∣∣
v1 v2 v3
w1 w2 w3

u1 u2 u3

∣∣∣∣∣∣ .
Theorem: The absolute value of the triple product of ~v, ~w, and ~u is the volume of the

parallelepiped with edges ~v, ~w, and ~u.
The triple product is positive if ~v, ~w, and ~u, in that order, are oriented according to the

right hand rule in the same way as î, ĵ, and k̂ (or as ~v, ~w and ~v × ~w). It is negative if they
have the opposite orientation.

(This is related to some of the ways in which determinants are useful.)

Example: What does it mean geometrically if ~v × ~w = ~0?

~v and ~w are parallel.

If |~v × ~w| = |~v| |~w|?

~v and ~w are perpendicular.

If ~v · (~w × ~u) = 0?

~v, ~w, and ~u are coplanar.

If |~v · (~w × ~u)| = |~v| |~w| |~u|?

~v, ~w, and ~u are pairwise orthogonal (perpendicular).

Is it always true that |~v · (~w × ~u)| ≤ |~v| |~w| |~u|? Why or why not?

Yes, since
|~v · (~w × ~u)| = |~v||~w × ~u|| cos θ| = |~v|(|~w||~u| sinϕ)| cos θ|

where θ is the angle between ~v and ~w × ~u and ϕ is the angle between ~w and ~u.
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A plane contains the triangle with vertices P = (1, 1, 1), Q = (1, 2, 3), and R = (2, 2,−1).
Find two vectors parallel to the plane but not parallel to each other.

−→
PR = 〈2− 1, 2− 1,−1− 1〉 = 〈1, 1,−2〉 ;
−→
QR = 〈2− 1, 2− 2,−1− 3〉 = 〈1, 0,−4〉 .

Find a vector perpendicular to the plane. (Hint: Use the cross product.)
(We will see next time that if you know a point on a plane and a vector perpendicular to

the plane, you can write down the equation of the plane, so this is a useful thing to be able
to do.)

〈1, 1,−2〉 × 〈1, 0,−4〉 = 〈−4, 2, −1〉 .

Find the volume of the parallelepiped whose edges are ~v = 〈1, 2, 1〉, ~w = 〈−1, 0, 1〉,
~u = 〈1, 1, 2〉.

~v · (~u× ~w) =

∣∣∣∣∣∣
1 2 1
−1 0 1
1 1 2

∣∣∣∣∣∣ = 1

∣∣∣∣0 1
1 2

∣∣∣∣− 2

∣∣∣∣−1 1
1 2

∣∣∣∣+ 1

∣∣∣∣−1 0
1 1

∣∣∣∣ = 1(−1)− 2(−3) + 1(−1) = 4.

The volume is |~v · (~u× ~w)| = 4.

Use the algebraic rules for dot products and cross products (for example, the distributive
law ~v× (~w+ ~u) = (~v× ~w) + (~v + ~u)) to show that the triple product of ~v, ~w, and s~v + t~w is
always zero, for any vectors ~v and ~w and any scalars s and t.

Now use geometric reasoning to show the same thing.
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Physics Connection:

◦
~r

// •

~F

??

~Fp

//

~Fn

KS

θ

Q

OO

P

OO

An object • (at point P ) is attached by a rigid rod to a fixed point ◦ (point Q), but is
free to rotate around that point in any direction. The vector ~r goes to the object from the
fixed point around which it may rotate. A force ~F acts on the object.

The torque vector ~τ represents the tendency of the object to rotate around the fixed
point, caused by the force ~F .

If we decompose ~F into two component forces, ~Fp parallel to ~r and ~Fn normal to ~r, only
~Fn imparts torque.

The magnitude of the torque depends both on the force and on the distance from the
fixed point Q (think levers, or seesaws), and is

|τ | = |~r| |~Fn| = |~r| |~F | sin(θ) = |~r × ~F |.

The direction of τ gives the direction of the axis around which the object rotates.

Repetition for emphasis: The direction of τ gives the direction of the axis
around which the object rotates. It does not give the direction in which the
object moves.

This is the way we represent rotational motion. As the earth rotates around its
axis, different points on its surface are moving in different directions, but the
axis of rotation is the same for the entire globe. So torque, rotational (angular)
velocity, etc. are represented by vectors pointing along the axis of rotation, which
in the case of the earth is the line through the north and south poles.

In this picture, since ~r and ~F are both in the plane of the paper, the axis of rotation is
perpendicular to the paper, so ~τ points in a direction perpendicular to the paper — either
out or in. By convention, since the rotation is counterclockwise as we look at the paper, the
torque vector τ points out of the paper toward us.

In other words, using the right-hand rule, we see the torque τ is given by

τ = ~r × ~F .
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