
Math 11
Fall 2016
Section 1

Friday, October 21, 2016

First, some important points from the last class:

Spherical coordinates (ρ, θ, φ):

θ

φ

ρ

x

z

y

P

O

r

ρ = distance from origin to P

θ = polar coordinate of xy plane projection of P

φ = angle from positive z axis to
−→
OP

dV = ρ2 sinφ dρ dθ dφ

r = ρ sinφ

x = ρ sinφ cos θ

y = ρ sinφ sin θ

z = ρ cosφ
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Today: General change of variables:

We already have two different ways to assign coordinates to a point in the plane, rectangu-
lar coordinates and polar coordinates. In rectangular coordinates, dividing x- and y-intervals
into subintervals of lengths ∆x and ∆y produces a grid in the plane, each rectangular patch
having area ∆x∆y. In polar coordinates, dividing r- and θ-intervals into subintervals of
lengths ∆r and ∆θ produces a kind of grid in the plane (see the picture), each patch having
area approximately r∆r∆θ (where (r, θ) are the polar coordinates of a point in the patch).
We used this to write dA = dx dy = r dr dθ.

x = x y = y ∆A = ∆x∆y x = r cos θ y = r sin θ ∆A ≈ r∆r∆θ

Another way to view this: We have a polar coordinate transformation, which is a function
T (r, θ) = (x, y) = (r cos θ, r sin θ) that takes polar coordinates to rectangular coordinates.
We can visualize T by drawing the rθ plane with a rectangular grid, and then drawing the
xy plane as the image of the rθ plane with the transformed grid.

rθ plane
r = a

θ = 2π

−→T

xy plane

A small region of area ∆r∆θ is transformed into a small region of area (approximately)
r∆r∆θ. Its area is stretched by a factor of r. The r in the expression dA = r dr dθ is
precisely this factor by which areas are stretched by the transformation T .

For a general change of variable, to evaluate an integral

∫∫
R

f(x, y) dA, we will relate

rectangular coordinates (x, y) to some other coordinates (u, v) by means of a transformation
T , setting (x, y) = T (u, v). By writing (x, y) in terms of (u, v), we can rewrite both the
region of integration R and the integrand f(x, y) in terms of u and v. (We choose T so this
rewriting simplifies things.) To rewrite dA in terms of du and dv, we need a technique to
find the stretching factor for the transformation T .

Note that in general this stretching factor will not be a number, but will be a function
of (u, v). For the polar coordinate transformation, we have stretch(r, θ) = r.

Later we will learn the official name of the stretch function.
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For example, let’s look at another way of assigning coordinates, which we will call T
coordinates. (T for temporary; this is only for this problem.) A point with the usual

rectangular coordinates (x, y) has T coordinates (u, v) where u =
x

2
and v =

y

3
.

If a point has T coordinates (u, v), what are its rectangular coordinates?

(x, y) = (2u, 3v)

A rectangular region has corners with T coordinates (u, v), (u+ ∆u, v), (u, v + ∆v), and
(u + ∆u, v + ∆v). What is the area ∆A of this region? (It is not ∆u∆v. Try writing its
corners in rectangular coordinates.)

Corners (2u, 3v), (2u+ 2∆u, 3v), (2u, 3v + 3∆v), and (2u+ 2∆u, 3v + 3∆v); sides 2∆u and
3∆v; area ∆A = 6∆u∆v.

To express a double integral in T coordinates, how should we express dA in terms of du
and dv?

dA = 6 du dv.

Describe the region in the xy plane whose area is given by

∫∫
(3x)2+(2y)2≤36

dx dy.

(3x)2 + (2y)2 ≤ 36 gives the region inside an ellipse through points (±2, 0) and (0,±3).

Rewrite this integral in T coordinates. (Use the same form; you need not write it as an
iterated integral.)

The region of integration is (3(2u))2 + (2(3v))2 ≤ 36, or u2 + v2 ≤ 1.

∫∫
u2+v2≤1

6 du dv

Without actually computing an antiderivative, evaluate the integral.

6(area of region of integration) = 6π.

This change of variables is also a transformation. (Okay, that’s what T really stands for.)
We have (x, y) = T (u, v) = (2u, 3v), and the stretching factor is 6.

The stretching factor here makes perfect sense; the u axis is stretched out by a factor of
2, and the v axis by a factor of 3. Stretching the unit circle in this way gives an ellipse.

uv plane

−→T

xy plane
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Our strategy from this point:
First, use what we know about vectors and geometry to find the stretching factor for a

linear transformation T (u, v) = (au+ bv + p, cu+ dv + q).
Second, say that any transformation T (as long as T is a differentiable function) is

approximated near a point by its linear approximation, and in the limit, the stretching
factor for T is the same as the stretching factor for the linear approximation.

Third, note that the same ideas work in three dimensions. (Also in more than three
dimensions, if we accept that the stretching factor for linear transformations works the same
way.)

Spoiler: The stretching factor is the absolute value of the determinant of a matrix of
partial derivatives.

First, consider a linear transformation given by

(x, y) = (x(u, v), y(u, v)) = T (u, v) = (au+ bv + p, cu+ dv + q).

Pictured here are a small rectangle in the uv plane of dimensions ∆u × ∆v, and its trans-
formed version (its image) in the xy-plane. We want to know the area of the image.

(u, v) (u+ ∆u, v)

(u+ ∆u, v + ∆v)(u, v + ∆v)

T (u, v)

T (u+ ∆u, v)

T (u+ ∆u, v + ∆v)

T (u, v + ∆v)

The image is a parallelogram. One edge is the vector from T (u, v) to T (u + ∆u, v). We
find the coordinates of the vector by subtracting the corresponding coordinates of the points:

〈a(u+ ∆u) + bv + p, c(u+ ∆u), dv, q〉 − 〈a(u) + bv + p, c(u), dv, q〉 = 〈a∆u, c∆u〉 .

Similarly, the adjacent edge of the parallelogram is the vector from T (u, v) to T (u, v + ∆v),
which is 〈b∆v, d∆v〉.

We need to know the area of the parallelogram with edges 〈a∆u, c∆u〉 and 〈b∆v, d∆v〉.
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We need to know the area of the parallelogram with edges 〈a∆u, c∆u〉 and 〈b∆v, d∆v〉.

We can find this by adding a z-coordinate of zero (to view the xy plane as sitting inside
R3), and using the cross product to find the area of the parallelogram:

| 〈a∆u, c∆u, 0〉×〈b∆v, d∆v, 0〉 | = |∆u(〈a, c, 0〉)×∆v(〈b, d, 0〉)| = | 〈a, c, 0〉×〈b, d, 0〉 |∆u∆v =∣∣∣∣∣∣det

 î ĵ k̂
a c 0
b d 0

∣∣∣∣∣∣ ∆u∆v = |〈0, 0, ad− bc〉| ∆u∆v = |ad− bc| ∆u∆v =

∣∣∣∣det

(
a b
c d

)∣∣∣∣ ∆u∆v.

We can identify a, b, c, and d as partial derivatives of the coordinate functions of the
transformation T :

(x, y) = T (u, v) = (au+ bv + p, cu+ dv + q);

a =
∂x

∂u
b =

∂x

∂v
c =

∂y

∂u
d =

∂y

∂v
.

If T were any other differentiable transformation with the same partial derivatives (we are
guaranteed that T is differentiable if all these partial derivatives are continuous), in the limit
we would have the same stretching factor:

∆A ≈
∣∣∣∣det

(
a b
c d

)∣∣∣∣ ∆u∆v =

∣∣∣∣∣∣det

∂x
∂u

∂x
∂v

∂u
∂u

∂y
∂v

∣∣∣∣∣∣ ∆u∆v.

The determinant of the matrix of partial derivatives has a special name:

Definition: The Jacobian of a transformation (x, y) = T (u, v) is the determinant of the
matrix of partial derivatives. It is denoted

∂(x, y)

∂(u, v)
= det

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

 .

Proposition: If (x, y) = T (u, v) is a differentiable transformation, then when changing
variables in an integral from (x, y) to (u, v), we have

dx dy = dA =

∣∣∣∣ ∂(x, y)

∂(u, v))

∣∣∣∣ du dv.
That is, the stretching factor is the absolute value of the Jacobian.
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∂(x, y)

∂(u, v)
= det


∂x
∂u

∂x
∂v

(row for x)

∂y
∂u

∂y
∂v

(row for y)

(column for ∂
∂u

) (column for ∂
∂v

)

 .

Example: In polar coordinates (x, y) = (r cos θ, r sin θ). Then

dA =

∣∣∣∣ ∂(x, y)

∂(r, θ))

∣∣∣∣ dr dθ =

∣∣∣∣∣∣det

∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣∣∣ dr dθ =

∣∣∣∣∣∣det

cos θ −r sin θ

sin θ r cos θ

∣∣∣∣∣∣ dr dθ =

∣∣r cos2 θ + r sin2 θ)
∣∣ dr dθ = r dr dθ.

Example: In the previous transformation (x, y) = (2u, 3v) that transformed the unit
disc u2 + v2 ≤ 1 into the elliptical region (3x)2 + (2y)2 ≤ 36, we have

dA =

∣∣∣∣ ∂(x, y)

∂(u, v))

∣∣∣∣ du dv =

∣∣∣∣∣∣det

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣ du dv =

∣∣∣∣det

(
2 0
0 3

)∣∣∣∣ du dv = 6 du dv.

Note: In three dimensions, we have the analogous stretching factor.

dA =

∣∣∣∣ ∂(x, y, z)

∂(u, v, w))

∣∣∣∣ du dv dw =

∣∣∣∣∣∣∣∣∣∣
det


∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w


∣∣∣∣∣∣∣∣∣∣
du dv dw.
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Example: Find the area of the region R bounded by the curve x+ y = (x− y)2 and the
line x+ y = 4.

Use a change of variable
u = x− y v = x+ y.

Then our boundary curves become

v = u2 v = 4

and the area is given by the integral∫∫
R

dA =

∫ 2

−2

∫ 4

u2

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ dv du.
To find the Jacobian, we need to solve for x and y in terms of u and v:

x =
u+ v

2
y =

v − u
2

∂(x, y)

∂(u, v)
= det

 1
2

1
2

−1
2

1
2

 =
1

2
.

Now we have∫ 2

−2

∫ 4

u2

(
1

2

)
dv du =

∫ 2

−2

(
2− u2

2

)
du =

(
2u− u3

6

) ∣∣∣∣∣
u=2

u=−2

=
16

3
.
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Example: Find the volume of the region above the region R inside the parallelogram
with vertices (in order counterclockwise) (0, 0), (3, 1), (5, 4), (2, 3), and below the surface
z = x+ y.

Compute ∫∫
R

(x+ y) dA

by using an appropriate change of variable.
There are (at least) two ways to think about finding the change of variable:

I. We already saw that a linear change of variable (x, y) = (au + bv + p, cu + dv + q)
transforms the unit square to a parallelogram. To send (u, v) = (0, 0) to (x, y) = (0, 0), we
need p = 0 and q = 0. To then send (u, v) = (1, 0) to (x, y) = (3, 1) we need a = 3 and
c = 1. To send (u, v) = (0, 1) to (x, y) = (2, 3) we need b = 2 and d = 3. Therefore, our
transformation is

x = 3u+ 2v y = u+ 3v

our Jacobian is

det

(
3 2
1 3

)
= 7

and our integral is ∫∫
R

(x+ y) dA

∫ 1

0

∫ 1

0

(4u+ 5v) 7 du dv.

II. The four lines that are the boundaries of our parallelogram have equations

3y − x = 0 3y − x = 7 2y − 3x = 0 2y − 3x = −7.

Use a transformation

u = 2y − 3x v = 3y − x x =
−3u+ 2v

7
y =

3v − u
7

.

Our Jacobian is

det

−3
7

2
7

−1
7

3
7

 =
−1

7

and our integral is ∫∫
R

(x+ y) dA =

∫ 7

0

∫ 0

−7

(
5v − 4u

7

)
1

7
du dv.
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Example: Show that the Jacobian of the spherical coordinate transformation

x = ρ sinφ cos θ y = ρ sinφ sin θ z = ρ cosφ

is
∂(x, y, z)

∂(ρ, φ, θ)
= ρ2 sinφ.
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Example: Sometimes the function being integrated calls for a change of variable.
Evaluate ∫ 4

0

∫ 4

0

x sin(
√
y) dy dx

by using a change of variable
u = x v =

√
y
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Example: Use a suitable change of variable to find the volume of the region above the
xy-plane and below the surface

z = 4− (x+ y)2 − (2x− y)2.
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