Math 11
Fall 2016
Section 1
Wednesday, October 19, 2016

First, some important points from the last class:
Polar coordinates (r, θ) :

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& r=\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

In rectangular coordinates, the differential area element is

$$
d A=d x d y
$$

In polar coordinates, the differential area element is

$$
d A=r d r d \theta
$$

Cylindrical coordinates (r, θ, z) :

$$
x=r \cos \theta \quad y=r \sin \theta \quad z=z \quad d V=r d r d \theta d z
$$

Today: Spherical coordinates (ρ, θ, ϕ) :

$$
\begin{aligned}
& \rho=\text { distance from origin to } P \\
& \theta=\text { polar coordinate of } x y \text { plane projection of } P \\
& \phi=\text { angle from positive } z \text { axis to } \overrightarrow{O P} \\
& d V=\rho^{2} \sin \phi d \rho d \theta d \phi \\
& r=\rho \sin \phi \\
& x=\rho \sin \phi \cos \theta \\
& y=\rho \sin \phi \sin \theta \\
& z=\rho \cos \phi
\end{aligned}
$$

Example: What surfaces do the following describe in spherical coordinates:

$$
\rho=1 \quad \theta=0 \quad \phi=\frac{\pi}{2} \quad \phi=\frac{\pi}{4} \quad \rho=\frac{1}{\sin \phi} \quad \rho=1+\cos \phi \quad \rho=\cos \phi \quad ?
$$

Unit sphere; half plane $y=0, x \geq 0 ; x$ plane; upward-facing cone; cylinder of radius 1 around z axis; surface obtained by revolving cardioid in $x z$ plane around z-axis; sphere of radius $\frac{1}{2}$ and center $\left(0,0, \frac{1}{2}\right)$.

Example: Find the volume of the three-dimensional region above the cone $z=\sqrt{x^{2}+y^{2}}$ and inside the sphere $x^{2}+y^{2}+z^{2}=1$.

In spherical coordinates, the sphere is $\rho=1$, and the cone is $\phi=\frac{\pi}{4}$.
To be inside the sphere we need $0 \leq \rho \leq 1$, and to be above the cone we need $0 \leq \phi \leq \frac{\phi}{4}$. Our limits on θ are $0 \leq \theta \leq 2 \pi$.
The integral is

$$
\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{1} \rho^{2} \sin \phi d \rho d \phi d \theta=\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \frac{\sin \phi}{3} d \phi d \theta=\left.\int_{0}^{2 \pi} \frac{-\cos \phi}{3}\right|_{0} ^{\frac{\pi}{4}} d \theta=\frac{2 \pi}{3}\left(-\frac{\sqrt{2}}{2}+1\right)
$$

Example: Rewrite the following cylindrical coordinates integral in spherical coordinates:

$$
\begin{gathered}
\int_{0}^{2 \pi} \int_{1}^{2} \int_{-\sqrt{4-r^{2}}}^{\sqrt{4-r^{2}}} r^{2} d z d r d \theta \\
\int_{0}^{2 \pi} \int_{\frac{\pi}{6}}^{\frac{5 \pi}{6}} \int_{\frac{1}{\sin \phi}}^{2}(\rho \sin \phi) \rho^{2} \sin \phi d \rho d \phi d \theta .
\end{gathered}
$$

Example: Rewrite the following rectangular coordinates integral in spherical coordinates:

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} z d z d y d x \\
\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{1}{\sin \phi \cos \theta+\sin \phi \sin \theta+\cos \phi}}(\rho \cos \phi) \rho^{2} \sin \phi d \rho d \phi d \theta
\end{gathered}
$$

Example: Rewrite the following spherical coordinates integral in cylindrical coordinates and in rectangular coordinates:

$$
\begin{gathered}
\int_{0}^{\frac{\pi}{4}} \int_{0}^{\frac{\pi}{4}} \int_{0}^{\frac{1}{\cos \phi}} \rho^{3} \sin ^{2} \phi d \rho d \phi d \theta \\
\int_{0}^{\frac{\pi}{4}} \int_{0}^{1} \int_{r}^{1} r^{2} d z d r d \theta \\
\int_{0}^{\frac{\sqrt{2}}{2}} \int_{y}^{\sqrt{1-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{1} \sqrt{x^{2}+y^{2}} d z d x d y
\end{gathered}
$$

Example: Use an integral in spherical coordinates to find the volume of the region inside a spherical ball of radius a.

Example: An object occupying the unit ball has a mass density function $f(x, y, z)=$ $z^{2}+1$. Find the object's total mass.

Exercise: We already have two different ways to assign coordinates to a point in the plane, rectangular coordinates and polar coordinates. In rectangular coordinates, dividing x - and y-intervals into subintervals of lengths Δx and Δy produces a grid in the plane, each rectangular patch having area $\Delta x \Delta y$. In polar coordinates, dividing r - and θ-intervals into subintervals of lengths Δr and $\Delta \theta$ produces a kind of grid in the plane (see the picture), each patch having area approximately $r \Delta r \Delta \theta$ (where (r, θ) are the polar coordinates of a point in the patch). We used this to write $d A=d x d y=r d r d \theta$.

$x=x \quad y=y \quad \Delta A=\Delta x \Delta y$

$$
x=r \cos \theta \quad y=r \sin \theta \quad \Delta A \approx r \Delta r \Delta \theta
$$

Consider another way of assigning coordinates, which we will call T coordinates (T for temporary; this is only for this problem). A point with the usual rectangular coordinates (x, y) has T coordinates (u, v) where $u=\frac{x}{2}$ and $v=\frac{y}{3}$.

If a point has T coordinates (u, v), what are its rectangular coordinates?

A rectangular region has corners with T coordinates $(u, v),(u+\Delta u, v),(u, v+\Delta v)$, and $(u+\Delta u, v+\Delta v)$. What is the area ΔA of this region? (It is not $\Delta u \Delta v$. Try writing its corners in rectangular coordinates.)

To express a double integral in T coordinates, how should we express $d A$ in terms of $d u$ and $d v$?

Describe the region in the $x y$ plane whose area is given by $\iint_{(3 x)^{2}+(2 y)^{2} \leq 36} d x d y$.

Rewrite this integral in T coordinates. (Use the same form; you need not write it as an iterated integral.)

Without actually computing an antiderivative, evaluate the integral.

