
Math 11
Fall 2016
Section 1

Monday, October 17, 2016

First, some important points from the last class:

∫∫∫
D

f(x, y, z) dV,

the integral (with respect to volume) of f over the three-dimensional region D, is a triple
integral, defined as a limit of Riemann sums, and evaluated as an iterated integral:∫ b

a︸︷︷︸
(x limits on entire region)

∫ g2(x)

g1(x)

∫ h2(x,y)

h1(x,y)︸ ︷︷ ︸
(y,z limits for fixed x)

f(x, y, z) dz dy dx.

∫ b

a

∫ g2(x)

g1(x)︸ ︷︷ ︸
(x,y limits on entire region)

∫ h2(x,y)

h1(x,y)︸ ︷︷ ︸
(z limits for fixed x,y)

f(x, y, z) dz dy dx.

Application 1: Suppose f(x, y, z) = 1. Then our Riemann sum is just adding up the
volumes of our tiny cubes, so ∫∫∫

D

dV = volume(D).

Application 2: The average value of f(x, y, z) over D is

1

volume(D)

(∫∫∫
D

f(x, y, z) dV

)
.

Application 3: Suppose that f(x, y, z) represents the mass density at point (x, y, z), say
in grams per cubic meter, of an object occupying region D. Then f(x, y, z)∆V represents
the approximate mass of a tiny cube of volume ∆V containing the point (x, y, z). Therefore,
the mass of the object is given by the integral∫∫∫

D

f(x, y, z) dV.

The same applies to any density function.
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Today: Integrals in polar and cylindrical coordinates.
Polar coordinates (r, θ): The distance from (0, 0) to (x, y) is r; the angle from the positive

x-axis to the ray from (0, 0) to (x, y), measured counterclockwise, is θ.

θ

y

x

r
x = r cos θ

y = r sin θ

r =
√
x2 + y2

Cylindrical coordinates (r, θ, z): Write x and y in polar coordinates.

Example: What curves do the following describe in polar coordinates:

r = 1 θ = 0 θ =
π

4
r = θ r = cos θ ?

The unit circle; the positive x-axis; the ray from (0, 0) through (1, 1); a spiral; the line
x = 1.

Example: What surfaces do the following describe in cylindrical coordinates:

r = 1 θ = 0 r = z z = θ r2 + z2 = 1 ?

The cylinder of radius 1 around the z-axis; the half-plane y = 0, x ≥ 0; an upwards-facing
cone with vertex at the origin; a spiral ramp; the unit sphere.
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Example: To compute ∫∫
D

1− x2 − y2 dA,

where D is the unit disc:
This is the volume of the region above the xy-plane and below the paraboloid given by

z = 1− x2 − y2.
The region we are integrating over, the unit disc D, can be easily described in polar

coordinates:
0 ≤ θ ≤ 2π 0 ≤ r ≤ 1.

The function we are integrating can also be easily written in polar coordinates:

1− x2 − y2 = 1− r2.

We can approximate this volume by using polar coordinates to divide D into small
pieces: Break up the r interval into n subintervals of length ∆r, and the θ subinterval into
m subintervals of length ∆θ. This divides D into nm-many small regions. Let us say that
region ij has area ∆Aij and contains a point with polar coordinates (rij, θij). Then we have∫∫

D

1− x2 − y2 dA =

∫∫
D

1− r2 dA ≈
n∑
i=1

m∑
j=

(1− r2) ∆Aij;

∫∫
D

1− r2 dA = lim
n,m→∞

(
n∑
i=1

m∑
j=1

(1− r2
ij) ∆Aij

)
.

This looks almost like a limit of Riemann sums, but not quite, because ∆Aij is not the same
as ∆r∆θ.

We need to see what, in fact, ∆Aij is.
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This picture shows the small region labeled ij. Its boundaries are the blue and black
edges. The marked point in the region has polar coordinates (rij, θij). The dotted lines are
emanating from the origin.

The difference in radius (distance from the origin) between the two curved blue edges is
∆r. Therefore the green line has length ∆r.

The angle between the straight black edges is ∆θ. Therefore, the length of the curved
red arc is rij∆θ. (The arc is the part of a circle of radius rij subtended by an angle ∆θ.)

Therefore the area of the small region shown is approximately the area of a rectangle of
sides ∆r and rij∆θ, or rij∆r∆θ. We use this approximation to rewrite our sum:∫∫

D

1− r2 dA ≈

(
n∑
i=1

m∑
j=1

(1− r2
ij) ∆Aij

)
≈

(
n∑
i=1

m∑
j=1

(1− r2
ij) rij∆r∆θ

)
.

Now this has the form of a Riemann sum:∫∫
D

1− r2 dA = lim
n,m→∞

(
n∑
i=1

m∑
j=1

(1− r2
ij) rij∆r∆θ

)
=

∫∫
D

(1− r2)r dr dθ =

∫ 2π

0

∫ 1

0

(1− r2)r dr dθ =

∫ 2π

0

(
r2

2
− r4

4

) ∣∣∣∣∣
r=1

r=0

dθ =

∫ 2π

0

1

4
dθ =

π

2
.
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The key thing to remember:

In rectangular coordinates, the differential area element is

dA = dx dy.

In polar coordinates, the differential area element is

dA = r dr dθ.

Example: Find the area of the region inside the curve given in polar coordinates by
r = cos θ + 1.

∫ 2π

0

∫ 1+cos θ

0

r dr dθ =

∫ 2π

0

(
r2

2

) ∣∣∣∣∣
r=1+cos θ

r=0

dθ =

∫ 2π

0

1

2
+ cos θ +

cos2 θ

2
dθ =

∫ 2π

0

1

2
dθ +

∫ 2π

0

cos θ dθ +

∫ 2π

0

cos2 θ

2
dθ = π + 0 +

∫ 2π

0

cos(2θ) + 1

4
dθ = π +

π

2
=

3π

2
.
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Cylindrical coordinates (r, θ, z):
TYPO IN CLASS NOTES – dz IS MISSING IN EXPRESSION FOR dV BELOW

x = r cos θ y = r sin θ z = z dV = r dr dθ dz.

Example (from last time):
The moment of inertia about an axis of a particle of mass m located a distance r from

that axis is mr2. If an object is composed of a large number of particles, the object’s moment
of inertia is the sum of the moments of inertia of the individual particles.

An object occupying the solid ball x2 + y2 + z2 ≤ 1 has mass density at point (x, y, z)
of f(x, y, z) = 2 − z2. Write down an integral representing its moment of inertia about the
z-axis.

A tiny cube of volume ∆V containing point (x, y, z) will have moment of inertia about
the z-axis approximately

(distance from z axis)2(mass) = (
√
x2 + y2 )2(f(x, y, z)︸ ︷︷ ︸

mass density

∆V︸︷︷︸
volume

) = (x2 + y2)(2− z2)∆V.

To approximate the object’s moment of inertia we would add up the moments of inertia
of these tiny cubes. We get the object’s moment of inertia by taking a limit as the size of
the cubes approaches 0. This is the triple integral

∫∫∫
x2+y2+z2≤1

(x2 + y2)(2− z2) dV.
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∫∫∫
x2+y2+z2≤1

(x2 + y2)(2− z2) dV.

Express the function to be integrated in cylindrical coordinates:

(x2 + y2)(2− z2) = r2(2− z2).

Express the region of integration in cylindrical coordinates (in two different ways):

0 ≤ θ ≤ 2π 0 ≤ r ≤ 1 −
√

1− r2 ≤ z ≤
√

1− r2;

−1 ≤ z ≤ 1 0 ≤ θ ≤ 2π 0 ≤ r ≤
√

1− z2.

Set up the integral (in two different ways):

∫ 2π

0

∫ 1

0

∫ √1−r2

−
√

1−r2
r2(2− z2)r dz dr dθ;

∫ 1

−1

∫ 2π

0

∫ √1−z2

0

r2(2− z2)r dr dθ dz;

Evaluate the integral: We’ll evaluate the second one:

∫ 1

−1

∫ 2π

0

∫ √1−z2

0

r2(2− z2)r dr dθ dz =

∫ 1

−1

∫ 2π

0

(
(2− z2)

r4

4

) ∣∣∣∣∣
r=
√

1−z2

r=0

dθ dz =

∫ 1

−1

∫ 2π

0

(2− z2)(1− z2)2

4
dθ dz =

∫ 1

−1

(2π)
(−z6 + 4z4 − 5z2 + 2)

4
dz =

π

2

(
−z

7

7
+

4z5

5
− 5z3

3
+ 2z

) ∣∣∣∣∣
z=1

z=−1

=
π

2

((
−1

7
+

4

5
− 5

3
+ 2

)
−
(

1

7
− 4

5
+

5

3
− 2

))
=

102π

105
.
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Example: Sketch the region of integration, then rewrite this integral in polar coordi-
nates: ∫ 1

2

0

∫ √1−y2

(
√

3)y

x dx dy.

∫ π
6

0

∫ 1

0

r2 cos θ dr dθ.

Example: Sketch the region of integration, then rewrite this integral in rectangular
coordinates: ∫ π

3

0

∫ 1
cos θ

0

r2 dr dθ.

∫ 1

0

∫ √3x

0

√
x2 + y2 dy dx
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Example: Use an integral in cylindrical coordinates to find the volume of the region
inside the sphere x2 + y2 + z2 = 4 and outside the cylinder x2 + y2 = 1.
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Example: D is the region in the first octant inside the cylinder x2 + y2 = 1 and below
the plane z = 1. Express ∫∫∫

D

xy dV

in both cylindrical and rectangular coordinates. Then evaluate the integral, using whichever
form you prefer.
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Example: The following integral is given in cylindrical coordinates. Sketch the region
of integration (as best you can) and rewrite the integral in rectangular coordinates. Then
evaluate the integral, using whichever form you prefer.∫ π

2

0

∫ cos θ

0

∫ 1−r2

0

r2 sin θ dz dr dθ
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