
Math 11
Fall 2016
Section 1

Wednesday, October 12, 2016

First, some important points from the last class:

Definition: If

R = {(x, y) | a ≤ x ≤ b & c ≤ y ≤ d} = [a, b]× [c, d]

and the domain of f(x, y) includes R, then∫∫
R

f(x, y) dA = lim
m,n→∞

m∑
i=1

n∑
j=1

f(x∗ij, y
∗
ij) ∆A.

The intervals [a, b] and [c, d] are divided into m subintervals of length ∆x =
b− a
m

and n

subintervals of length ∆y =
d− c
n

, respectively. This divides R into mn-many rectangles of

area ∆A = ∆x∆y.

The point (x∗ij, y
∗
ij) can be any point in rectangle ij, which corresponds to the ith subin-

terval of [a, b] and the jth subinterval of [c, d].

lim
m,n→∞

(
m∑
i=1

n∑
j=1

f(x∗ij, y
∗
ij) ∆A

)
= V

means that for every ε > 0 [output accuracy] there is a number N [input accuracy] such that
whenever m,n > N , no matter how the points (x∗ij, y

∗
ij) are chosen, we have∣∣∣∣∣

(
m∑
i=1

n∑
j=1

f(x∗ij, y
∗
ij) ∆A

)
− V

∣∣∣∣∣ < ε.

If

∫∫
R

f(x, y) dA exists, we say that f is integrable over the rectangle R.

Fubini’s Theorem: If f is continuous on R = [a, b] × [c, d] then f is integrable on R
and ∫∫

R

f(x, y) dA =

a,b limits on x︷ ︸︸ ︷∫ b

a

∫ d

c

f(x, y) dy︸ ︷︷ ︸
c,d limits on y

dx =

∫ d

c

∫ b

a

f(x, y) dx dy.

The average value of f(x, y) on R is given by

∫∫
R

f(x, y) dA

area(R)
.
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Example: Find the volume of the region above the xy plane and under the paraboloid
z = 1− x2 − y2.

The region is shown above; the top surface is the part of the paraboloid above the xy
plane, and the bottom surface is the unit disc x2 + y2 ≤ 1 in the xy plane. We can use
volumes by slicing. Here is a typical slice perpendicular to the x-axis (so x is a constant),
together with a view of the object’s base indicating where that slice is taken.

z = 1− x2 − y2

y

z

−
√

1− x2
√

1− x2

x

y

y = −
√

1− x2

y =
√

1− x2

The cross-sectional area is

A(x) =

∫ √1−x2

−
√
1−x2

(1− x2 − y2) dy =

(
y(1− x2)− y3

3

) ∣∣∣∣∣
y=
√
1−x2

y=−
√
1−x2

=
10

3
(1− x2)

3
2

and the volume is

V =

∫ 1

−1
A(x) dx =

∫ 1

−1

∫ √1−x2

−
√
1−x2

(1− x2 − y2) dy dx =

∫ 1

−1

(
10

3
(1− x2)

3
2

)
dx.

If D is the unit disc, the volume of the region above D and below z = 1− x2 − y2 is

V =

∫∫
D

(1− x2 − y2) dA.

2



Double integrals over general regions:

If D is any bounded region in the xy plane, and f(x, y) is a function defined on D, we
formally define ∫∫

D

f(x, y) dA =

∫∫
R

g(x, y) dA,

where R is any rectangle containing D, and g is defined by

g(x, y) =


f(x, y) (x, y) ∈ D;

0 (x, y) 6∈ D.

We compute D using the idea of volumes by slicing:

Type I Region R: a ≤ x ≤ b, g(x) ≤ y ≤ h(x):

x = a x = b

y = g(x)

y = h(x)

Notice that the red line shows the limits on y for a fixed value of x.∫∫
R

f(x, y) dA =

∫ b

a

∫ h(x)

g(x)

f(x, y) dy dx.

Note that the limits on x are constants, and the limits on y are functions of x.

Type II Region R: a ≤ y ≤ b, g(y) ≤ x ≤ h(y):∫∫
R

f(x, y) dA =

∫ b

a

∫ h(y)

g(y)

f(x, y) dx dy.
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Example: If R is the region above the x-axis, under the curve y = x2 and between the

lines x = 0 and x = 1, and f(x, y) = cos(x3), write

∫∫
R

f(x, y) dA using both orders of

integration. Evaluate the integral.

We look at the region as both a Type I region and a Type II region:

y = 0

x = 0 x = 1
y = x2

y = 0

y = 1

x = 1
x =
√
y

∫ 1

0

∫ x2

0

cos(x3) dy dx =

∫∫
R

f(x, y) dA =

∫ 1

0

∫ 1

√
y

cos(x3) dx dy.

Which shall we evaluate? Let’s try the left-hand one:

∫ x2

0

cos(x3) dy = y cos(x3)

∣∣∣∣∣
y=x2

y=0

= x2 cos(x3)

∫ 1

0

∫ x2

0

cos(x3) dy dx =

∫ 1

0

x2 cos(x3) dx =
sin(x3)

3

∣∣∣∣∣
x=1

x=0

=
sin(1)

3
.
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Example: Rewrite the given integral as an integral or sum of integrals in the oppo-
site order. Then evaluate it. Try to use symmetry rather than actually antidifferentiating
anything. ∫ 1

0

∫ x

−x
x2y dy dx.

x = 0

y = x

y = −x

x = 1

R y = 0

x = y

x = −y

x = 1R1

R2

y = 1

y = −1

∫∫
R

x2 dA =

∫∫
R1

x2y dA+

∫∫
R2

x2y dA =

∫ 1

0

∫ 1

y

x2y dx dy +

∫ 0

−1

∫ 1

−y
x2y dx dy

To evaluate the integral using symmetry, note that x2y is an odd function of y. Therefore,
since the region of integration is symmetric about the x-axis y = 0, volume above the xy
plane equals volume below the xy plane, so the value of the integral is 0.
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Example: Sketch the three-dimensional region whose volume is given by∫ 1

0

∫ 1−x

0

(1− x− y) dy dx.

First sketch the region in the xy plane over which we are integrating:

x = 0 x = 1
y = 0

y = 1− x

Now consider the surface z = 1 − x − y, which can be rewritten x + y + z = 1. This is
a plane containing the points (1, 0, 0), (0, 1, 0), and (0, 0, 1). With this information we can
sketch our region of integration D, the lower boundary of our three-dimensional region, and
the surface z = 1− x− y above D, the upper boundary of our three-dimensional region.

This is the corner of the first octant cut off by the plane x+ y + z = 1.
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Example: Estimate the value of

∫∫
D

xy dA where D is the region x ≥ 0, y ≥ 0,

x2 + y2 ≤ 1.

Find the maximum and minimum values of xy on D. Clearly, the minimum value is
0, and a look at the contour plot of xy tells us the maximum value must be at the point

on the portion of the unit circle bounding D at which x = y, namely

(√
2

2
,

√
2

2

)
. Since

f

(√
2

2
,

√
2

2

)
=

1

2
, on D we have

0 ≤ xy ≤ 1

2
;∫∫

D

0 dA ≤
∫∫

D

xy dA ≤
∫∫

D

1

2
dA;

0 ≤
∫∫

D

xy dA ≤ 1

2
(area(D)) =

π

8
.

We could get a better approximation by dividing D into several regions and applying
this reasoning to each separately.

This is like approximating an integral

∫ b

a

f(x) dx by the upper and lower Riemann sums.

For the upper sum, we choose from interval i a point x∗i at which f reaches a maximum on
interval i, and for the lower sum, we choose from interval i a point x∗i at which f reaches a
minimum on interval i. Then we have

lower sum ≤
∫ b

a

f(x) dx ≤ upper sum.

Furthermore, we can make the approximation as close as we want, by dividing finely enough.
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Example: Find an expression, involving an iterated integral, for the average distance
from the origin of a point in the unit disc.

1

π

∫ 1

−1

∫ √1−x2

−
√
1−x2

√
x2 + y2 dy dx
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Example: Find the value of ∫∫
D

(x+ 2y − xy + 4) dA,

where D is the unit disc, using symmetry and geometric arguments.

Hint:

∫∫
R

f(x, y) + g(x, y) dA =

∫∫
R

f(x, y) dA+

∫∫
R

g(x, y) dA.
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Example: Write down a double integral representing∫∫
R

(x2 − y2) dA,

where R is the region given by 0 ≤ x ≤ 1 and x2 − y2 ≥ 0. Then evaluate the integral.
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Example: Write down iterated integrals representing the volume of the three-dimensional
region given by x2 + y2 ≤ 4, y2 + z2 ≤ 4, and z ≥ 0, in both orders of integration. Then find
the volume by evaluating one of the integrals.
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Example: A hemispherical bowl of radius a contains liquid with maximum depth h.
Write down an iterated integral representing the volume of the liquid in the bowl.

12


