Math 11
Fall 2016
Section 1
Wednesday, October 12, 2016

First, some important points from the last class:
Definition: If

$$
R=\{(x, y) \mid a \leq x \leq b \& c \leq y \leq d\}=[a, b] \times[c, d]
$$

and the domain of $f(x, y)$ includes R, then

$$
\iint_{R} f(x, y) d A=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A
$$

The intervals $[a, b]$ and $[c, d]$ are divided into m subintervals of length $\Delta x=\frac{b-a}{m}$ and n subintervals of length $\Delta y=\frac{d-c}{n}$, respectively. This divides R into $m n$-many rectangles of area $\Delta A=\Delta x \Delta y$.

The point $\left(x_{i j}^{*}, y_{i j}^{*}\right)$ can be any point in rectangle $i j$, which corresponds to the $i^{\text {th }}$ subinterval of $[a, b]$ and the $j^{\text {th }}$ subinterval of $[c, d]$.

$$
\lim _{m, n \rightarrow \infty}\left(\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A\right)=V
$$

means that for every $\varepsilon>0$ [output accuracy] there is a number N [input accuracy] such that whenever $m, n>N$, no matter how the points $\left(x_{i j}^{*}, y_{i j}^{*}\right)$ are chosen, we have

$$
\left|\left(\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A\right)-V\right|<\varepsilon .
$$

If $\iint_{R} f(x, y) d A$ exists, we say that f is integrable over the rectangle R.
Fubini's Theorem: If f is continuous on $R=[a, b] \times[c, d]$ then f is integrable on R and

$$
\iint_{R} f(x, y) d A=\overbrace{\int_{a}^{b} \underbrace{\int_{c}^{d} f(x, y) d y}_{c, d \text { limits on } y} d x}^{a, b \text { limits on } x}=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

The average value of $f(x, y)$ on R is given by $\frac{\iint_{R} f(x, y) d A}{\operatorname{area}(\mathrm{R})}$.

Example: Find the volume of the region above the $x y$ plane and under the paraboloid $z=1-x^{2}-y^{2}$.

The region is shown above; the top surface is the part of the paraboloid above the $x y$ plane, and the bottom surface is the unit disc $x^{2}+y^{2} \leq 1$ in the $x y$ plane. We can use volumes by slicing. Here is a typical slice perpendicular to the x-axis (so x is a constant), together with a view of the object's base indicating where that slice is taken.

The cross-sectional area is

$$
A(x)=\int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}\left(1-x^{2}-y^{2}\right) d y=\left.\left(y\left(1-x^{2}\right)-\frac{y^{3}}{3}\right)\right|_{y=-\sqrt{1-x^{2}}} ^{y=\sqrt{1-x^{2}}}=\frac{10}{3}\left(1-x^{2}\right)^{\frac{3}{2}}
$$

and the volume is

$$
V=\int_{-1}^{1} A(x) d x=\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}\left(1-x^{2}-y^{2}\right) d y d x=\int_{-1}^{1}\left(\frac{10}{3}\left(1-x^{2}\right)^{\frac{3}{2}}\right) d x
$$

If D is the unit disc, the volume of the region above D and below $z=1-x^{2}-y^{2}$ is

$$
V=\iint_{D}\left(1-x^{2}-y^{2}\right) d A
$$

Double integrals over general regions:
If D is any bounded region in the $x y$ plane, and $f(x, y)$ is a function defined on D, we formally define

$$
\iint_{D} f(x, y) d A=\iint_{R} g(x, y) d A
$$

where R is any rectangle containing D, and g is defined by

$$
g(x, y)= \begin{cases}f(x, y) & (x, y) \in D \\ 0 & (x, y) \notin D\end{cases}
$$

We compute D using the idea of volumes by slicing:
Type I Region $R: a \leq x \leq b, g(x) \leq y \leq h(x)$:

Notice that the red line shows the limits on y for a fixed value of x.

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g(x)}^{h(x)} f(x, y) d y d x
$$

Note that the limits on x are constants, and the limits on y are functions of x.
Type II Region R : $a \leq y \leq b, g(y) \leq x \leq h(y)$:

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g(y)}^{h(y)} f(x, y) d x d y
$$

Example: If R is the region above the x-axis, under the curve $y=x^{2}$ and between the lines $x=0$ and $x=1$, and $f(x, y)=\cos \left(x^{3}\right)$, write $\iint_{R} f(x, y) d A$ using both orders of integration. Evaluate the integral.

We look at the region as both a Type I region and a Type II region:

$$
\begin{gathered}
x=0 \underbrace{}_{y=0} \underbrace{x=x^{2}}_{y=0} x \\
\int_{0}^{1} \int_{0}^{x^{2}} \cos \left(x^{3}\right) d y d x=1 \\
x=\sqrt{y} \int_{R} f(x, y) d A=\int_{0}^{1} \int_{\sqrt{y}}^{1} \cos \left(x^{3}\right) d x d y
\end{gathered}
$$

Which shall we evaluate? Let's try the left-hand one:

$$
\begin{gathered}
\int_{0}^{x^{2}} \cos \left(x^{3}\right) d y=\left.y \cos \left(x^{3}\right)\right|_{y=0} ^{y=x^{2}}=x^{2} \cos \left(x^{3}\right) \\
\int_{0}^{1} \int_{0}^{x^{2}} \cos \left(x^{3}\right) d y d x=\int_{0}^{1} x^{2} \cos \left(x^{3}\right) d x=\left.\frac{\sin \left(x^{3}\right)}{3}\right|_{x=0} ^{x=1}=\frac{\sin (1)}{3} .
\end{gathered}
$$

Example: Rewrite the given integral as an integral or sum of integrals in the opposite order. Then evaluate it. Try to use symmetry rather than actually antidifferentiating anything.

$$
\int_{0}^{1} \int_{-x}^{x} x^{2} y d y d x
$$

$$
\iint_{R} x^{2} d A=\iint_{R_{1}} x^{2} y d A+\iint_{R_{2}} x^{2} y d A=\int_{0}^{1} \int_{y}^{1} x^{2} y d x d y+\int_{-1}^{0} \int_{-y}^{1} x^{2} y d x d y
$$

To evaluate the integral using symmetry, note that $x^{2} y$ is an odd function of y. Therefore, since the region of integration is symmetric about the x-axis $y=0$, volume above the $x y$ plane equals volume below the $x y$ plane, so the value of the integral is 0 .

Example: Sketch the three-dimensional region whose volume is given by

$$
\int_{0}^{1} \int_{0}^{1-x}(1-x-y) d y d x
$$

First sketch the region in the $x y$ plane over which we are integrating:

Now consider the surface $z=1-x-y$, which can be rewritten $x+y+z=1$. This is a plane containing the points $(1,0,0),(0,1,0)$, and $(0,0,1)$. With this information we can sketch our region of integration D, the lower boundary of our three-dimensional region, and the surface $z=1-x-y$ above D, the upper boundary of our three-dimensional region.

This is the corner of the first octant cut off by the plane $x+y+z=1$.

Example: Estimate the value of $\iint_{D} x y d A$ where D is the region $x \geq 0, y \geq 0$, $x^{2}+y^{2} \leq 1$.

Find the maximum and minimum values of $x y$ on D. Clearly, the minimum value is 0 , and a look at the contour plot of $x y$ tells us the maximum value must be at the point on the portion of the unit circle bounding D at which $x=y$, namely $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$. Since $f\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)=\frac{1}{2}$, on D we have

$$
\begin{gathered}
0 \leq x y \leq \frac{1}{2} \\
\iint_{D} 0 d A \leq \iint_{D} x y d A \leq \iint_{D} \frac{1}{2} d A \\
0 \leq \iint_{D} x y d A \leq \frac{1}{2}(\operatorname{area}(\mathrm{D}))=\frac{\pi}{8}
\end{gathered}
$$

We could get a better approximation by dividing D into several regions and applying this reasoning to each separately.

This is like approximating an integral $\int_{a}^{b} f(x) d x$ by the upper and lower Riemann sums. For the upper sum, we choose from interval i a point x_{i}^{*} at which f reaches a maximum on interval i, and for the lower sum, we choose from interval i a point x_{i}^{*} at which f reaches a minimum on interval i. Then we have

$$
\text { lower sum } \leq \int_{a}^{b} f(x) d x \leq \text { upper sum. }
$$

Furthermore, we can make the approximation as close as we want, by dividing finely enough.

Example: Find an expression, involving an iterated integral, for the average distance from the origin of a point in the unit disc.

$$
\frac{1}{\pi} \int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x
$$

Example: Find the value of

$$
\iint_{D}(x+2 y-x y+4) d A
$$

where D is the unit disc, using symmetry and geometric arguments.

$$
\text { Hint: } \iint_{R} f(x, y)+g(x, y) d A=\iint_{R} f(x, y) d A+\iint_{R} g(x, y) d A \text {. }
$$

Example: Write down a double integral representing

$$
\iint_{R}\left(x^{2}-y^{2}\right) d A
$$

where R is the region given by $0 \leq x \leq 1$ and $x^{2}-y^{2} \geq 0$. Then evaluate the integral.

Example: Write down iterated integrals representing the volume of the three-dimensional region given by $x^{2}+y^{2} \leq 4, y^{2}+z^{2} \leq 4$, and $z \geq 0$, in both orders of integration. Then find the volume by evaluating one of the integrals.

Example: A hemispherical bowl of radius a contains liquid with maximum depth h. Write down an iterated integral representing the volume of the liquid in the bowl.

