Math 11
Fall 2016

Section 1
Wednesday, October 12, 2016

First, some important points from the last class:
Definition: If
R={(z,y)|a<z<b&c<y<d}=]lab] x]|cd]
and the domain of f(x,y) includes R, then
[ t@aa= tm 33 ) aa
R m,n—oo i1 =1

—a
and n

The intervals [a, b] and [¢, d] are divided into m subintervals of length Ax =

subintervals of length Ay = c, respectively. This divides R into mn-many rectangles of
area AA = AzxAy.

The point (z7;,y;;) can be any point in rectangle ij, which corresponds to the it subin-
terval of [a,b] and the j™ subinterval of [, d].

i=1 j=1

means that for every e > 0 [output accuracy] there is a number N [input accuracy] such that
whenever m,n > N, no matter how the points (:r;‘j, yZ*J) are chosen, we have

(zzﬂx;,y;;m) v

i=1 j=1

< E.

If // f(z,y) dA exists, we say that f is integrable over the rectangle R.
R

Fubini’s Theorem: If f is continuous on R = [a,b] X [c,d] then f is integrable on R

and
a,b limits on =

//Rf(x,y)dA:/a/Cf(x,y)dydx:/c/af(x,y)dxdy.

¢,d limits on y
/ / fz,y)dA
R
R)

area(

The average value of f(x,y) on R is given by



Example: Find the volume of the region above the xy plane and under the paraboloid
z=1-a%—9y%

The region is shown above; the top surface is the part of the paraboloid above the xy
plane, and the bottom surface is the unit disc 22 + y*> < 1 in the xy plane. We can use
volumes by slicing. Here is a typical slice perpendicular to the z-axis (so z is a constant),
together with a view of the object’s base indicating where that slice is taken.
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The cross-sectional area is

/ 2 :m
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and the volume is

1 1 \/@ 1 10 5
V:/ A(x)dx:/ / (1—x2—y2)dydx:/ (—(1—352)2) dx.
-1 —1Jvia? 1\ 3

If D is the unit disc, the volume of the region above D and below z = 1 — 22 — 3% is

V://D(l—a:?—yQ)dA.



Double integrals over general regions:

If D is any bounded region in the zy plane, and f(z,y) is a function defined on D, we

formally define
/ f(rv,y)dAZ// 9(z,y)dA
D R

where R is any rectangle containing D, and g is defined by

f(z,y) (z,y) € D;
g(w,y) =
0 (r,y) € D.

We compute D using the idea of volumes by slicing:

Type I Region R: a <z <b, g(z) <y < h(x):

Notice that the red line shows the limits on y for a fixed value of x.

J[ remaa= | b / :j)f(w,y) dy d.

Note that the limits on z are constants, and the limits on y are functions of x.

Type IT Region R: a <y <b, g(y) <z <h

/fxydA // F(z,y) dz dy.



Example: If R is the region above the z-axis, under the curve y = 22 and between the
lines z = 0 and z = 1, and f(z,y) = cos(z?), write // f(z,y) dA using both orders of
R

integration. Evaluate the integral.

We look at the region as both a Type I region and a Type II region:

/01 /0 cos(a®) dy dx = / /R fla,y)dA = /0 1 /\/;cos(xg)dxdy.

Which shall we evaluate? Let’s try the left-hand one:

22 y=r
/ cos(z®) dy = y cos(z?) = 27 cos(x?)
0 =0
Lo ! sin(z?) = sin(1)
/ / cos(x?) dy dx = / z? cos(z®) dx = =
o Jo 0 3 —0 3




Example: Rewrite the given integral as an integral or sum of integrals in the oppo-
site order. Then evaluate it. Try to use symmetry rather than actually antidifferentiating

anything.
1 T
/ / ?y dy du.
0 —x
y=1
y==1 =yl
r=1 R, r=1
x=0 R y=20
Ry
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1 pl 0,1
// $2dA:// nydA—f—// x2ydA:/ / a:dexdy—l—/ / 22y da dy
R Ry R 0 Jy —1J-y

To evaluate the integral using symmetry, note that 2%y is an odd function of y. Therefore,
since the region of integration is symmetric about the z-axis y = 0, volume above the zy
plane equals volume below the zy plane, so the value of the integral is 0.



Example: Sketch the three-dimensional region whose volume is given by

1 1—z
/ / (1 —z—vy)dydz.
o Jo

First sketch the region in the xy plane over which we are integrating:

z=0 T 1

Now consider the surface z = 1 — & — y, which can be rewritten x + y + z = 1. This is
a plane containing the points (1,0,0), (0,1,0), and (0,0,1). With this information we can
sketch our region of integration D, the lower boundary of our three-dimensional region, and
the surface z = 1 — x — y above D, the upper boundary of our three-dimensional region.
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This is the corner of the first octant cut off by the plane x +y + 2z = 1.



Example: Estimate the value of // xydA where D is the region x > 0, y > 0,
D

NN

Find the maximum and minimum values of xy on D. Clearly, the minimum value is
0, and a look at the contour plot of xy tells us the maximum value must be at the point

ﬁ, ﬁ) . Since

2?2+ 2 < 1.

on the portion of the unit circle bounding D at which x = y, namely < 7 5

(2L

27 2

1
) =5 on D we have

1
27

//DOdAS//Da:ydAg//D%dA;

0< //D rydA < %(area(D)) -2

We could get a better approximation by dividing D into several regions and applying
this reasoning to each separately.

0<zy<

b
This is like approximating an integral f(z) dx by the upper and lower Riemann sums.

a
For the upper sum, we choose from interval ¢ a point z; at which f reaches a maximum on
interval 4, and for the lower sum, we choose from interval ¢ a point =} at which f reaches a
minimum on interval . Then we have

b
lower sum < / f(z)dx < upper sum.

Furthermore, we can make the approximation as close as we want, by dividing finely enough.



Example: Find an expression, involving an iterated integral, for the average distance
from the origin of a point in the unit disc.

1 1 V1—z2
%/ / Va2 +ytdydx
_1J=

V1—z22



Example: Find the value of

//(x+2y—xy+4)dA,
D

where D is the unit disc, using symmetry and geometric arguments.

Hint: //Rf(x,y) +g(z,y)dA = //Rf(:v,y) dA+//Rg(x,y) dA.



Example: Write down a double integral representing

[ =aa

where R is the region given by 0 < < 1 and 22 — 32 > 0. Then evaluate the integral.
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Example: Write down iterated integrals representing the volume of the three-dimensional
region given by z2 +y? < 4, y? + 22 < 4, and z > 0, in both orders of integration. Then find
the volume by evaluating one of the integrals.
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Example: A hemispherical bowl of radius a contains liquid with maximum depth h.
Write down an iterated integral representing the volume of the liquid in the bowl.
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