
Math 11
Fall 2016
Section 1

Monday, October 10, 2016

First, some important points from the last class:

Finding the largest or smallest value of f(x1, . . . , x1) is called an optimization problem.
Finding the largest or smallest value of f(x1, . . . , xn) when (x1, . . . , xn) is required to satisfy
some condition (for example, x2 + y2 = 1) is called a constrained optimization problem, and
the condition is the constraint.

When we are trying to maximize or minimize f on a closed, bounded, region, looking
at the edge of that region generally involves constraints of the form g(x1, . . . , xn) = k (for
example, x2 + y2 = 1). In other words, (x1, . . . , xn) must lie on some level set (level curve,
level surface, . . . ) of g.

The method of Lagrange multipliers is designed to solve exactly this kind of problem.

Theorem (the method of Lagrange multipliers): Suppose f(x1, . . . , xn) and g(x1, . . . , xn)
are differentiable functions, and S is a level set of g, defined by g(x1, . . . , xn) = k.

If f(x1, . . . , xn) has a largest (or smallest) value on S, then it attains that extreme value
at a point (x1, . . . , xn) at which either

∇g(x1, . . . , xn) = ~0

or, for some scalar λ,
∇f(x1, . . . xn) = λ∇g(x1, . . . , xn).

This means that to solve this problem, we should look for solutions to

∇g(x1, . . . , xn) = ~0 & g(x1, . . . , xn) = k

and to
∇f(x1, . . . , xn) = λ∇g(x1, . . . , xn) & g(x1, . . . , xn) = k.

1



Today we look at integrating functions f(x, y).

Example: Find the volume of the region lying above the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
and below the graph of the function f(x, y) = x2 + y2.

Method 1: Approximate the volume by adding up the volumes of many skinny rectangular
columns, in the same we we approximated the area under a curve by adding up the areas of
many skinny rectangles. Take a limit as the number of subdivisions approaches infinity.
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For this example, as a not very close approximation, we divide the intervals 0 ≤ x ≤ 1
and 0 ≤ y ≤ 1 into two subintervals (intervals I1, I2 and J1, J2) of lengths ∆x = .5 and
∆y = .5. This divides the square into four subsquares (squares S11, S12, S21, S22) each of
which has area ∆A = ∆x∆y = .25.

S11

S12

S21

S22

I1 I2

J1

J2

1

10

(x∗11, y
∗
11)

(x∗12, y
∗
12)

(x∗21, y
∗
21)

(x∗22, y
∗
22)

Approximate the volume under the surface above square i,j by the volume of a rectangular
column whose height is the same as the height of the surface z = f(x, y) above some point
(x∗ij, y

∗
ij) in square i,j. The volume of column i,j is

f(x∗ij, y
∗
ij)∆x∆y = ((x∗ij)

2 + (y∗ij)
2)(.25).

We add the volumes of all the columns to get our approximation.
For our example, we will take as our (x∗ij, y

∗
ij) the midpoints of our small squares, which

are (.25, .25), (.25, .75), (.75, .25), (.75, .75). This gives

V ≈
(
(.25)2 + (.25)2

)
(.25) +

(
(.25)2 + (.75)2

)
(.25)+(

(.75)2 + (.25)2
)
(.25) +

(
(.75)2 + (.75)2

)
(.25) = .625.
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Method 2: Use volumes by slicing. If slicing our region perpendicular to the x-axis where
x = x0 yields a slice of area A(x0), then the volume is

V =

∫ 1

0

A(x) dx.

Pictured below is the cross-section at x = x0:

y = 0 y = 1

z = x20 + y2
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y = 0 y = 1

z = x20 + y2

From this picture we have A(x0) =

∫ 1

0

x20 + y2 dy. Therefore, the volume of the solid is

V =

∫ 1

0

A(x) dx =

∫ 1

0

[∫ 1

0

x2 + y2 dy

]
dx.

To compute this, keep in mind that in the inner integral, we are integrating with respect to
y, and x is playing the role of a constant:∫ 1

0

[∫ 1

0

x2 + y2 dy

]
dx =

∫ 1

0

[
yx2 +

y3

3

] ∣∣∣y=1

y=0
dx =

∫ 1

0

[
x2 +

1

3

]
dx =

[
x3

3
+
x

3

] ∣∣∣x=1

x=0
=

2

3
.

This example illustrates integrating a function f(x, y) over a rectangle in the xy-plane.
Method 1 leads to the definition of double integral, and method 2 leads to a way to compute
double integrals.

First, a piece of notation:

R = {(x, y) | a ≤ x ≤ b & c ≤ y ≤ d} = [a, b]× [c, d]

denotes the rectangle in R2 whose projection on the horizontal (x) axis is the interval [a, b]
and whose projection on the vertical (y) axis is [c, d].

a b

c

d

R
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Method 1 leads to the definition of double integral:

Definition: If R = [a, b]× [c, d] is a rectangle in the xy plane, and f(x, y) is a function
whose domain includes R, then∫∫

R

f(x, y) dA = lim
m,n→∞

m∑
i=1

n∑
j=1

f(x∗ij, y
∗
ij) ∆A,

if this limit exists. The notation means the following:

The intervals [a, b] and [c, d] are divided into m subintervals of length ∆x =
b− a
m

and n

subintervals of length ∆y =
d− c
n

, respectively. This divides R into mn-many rectangles of

area ∆A = ∆x∆y.

The point (x∗ij, y
∗
ij) can be any point in rectangle ij, which corresponds to the ith subin-

terval of [a, b] and the jth subinterval of [c, d].

lim
m,n→∞

(
m∑
i=1

n∑
j=1

f(x∗ij, y
∗
ij) ∆A

)
= V

means that for every ε > 0 [output accuracy] there is a number N [input accuracy] such that
whenever m,n > N , no matter how the points (x∗ij, y

∗
ij) are chosen, we have∣∣∣∣∣

(
m∑
i=1

n∑
j=1

f(x∗ij, y
∗
ij) ∆A

)
− V

∣∣∣∣∣ < ε.

If

∫∫
R

f(x, y) dA exists, we say that f is integrable over the rectangle R.

Method 2 leads to a technique for computing double integrals:

Theorem (Fubini’s Theorem): If f is continuous on R = [a, b]× [c, d] then f is integrable
on R and ∫∫

R

f(x, y) dA =

a,b limits on x︷ ︸︸ ︷∫ b

a

∫ d

c

f(x, y) dy︸ ︷︷ ︸
c,d limits on y

dx =

∫ d

c

∫ b

a

f(x, y) dx dy.

Note: The textbook says this is proved in advanced mathematics courses. However, we
can get a look at the ideas involved. We will post notes about this on the web page.
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Example: Find the volume of the area above R = [0, 1]× [0, 2] and under the graph of
f(x, y) = xy.

∫ 1

0

∫ 2

0

xy dy dx =

∫ 1

0

xy2
2

∣∣∣∣∣
y=2

y=0

 dx =

∫ 1

0

2x dx = x2
∣∣∣x=1

x=0
= 1.

Notice that writing

xy2
2

∣∣∣∣∣
y=2

y=0

 rather than

xy2
2

∣∣∣∣∣
2

0

 helps to keep things straight.

Another way to approach this particular example: Note that in the inner integral

∫ 2

0

xy dy,

we treat x as a constant. Therefore we can move it outside the integral sign:∫ 1

0

∫ 2

0

xy dy dx =

∫ 1

0

x

∫ 2

0

y dy dx.

Now, the inner integral

∫ 2

0

y dy actually is a constant, so we can move it outside the integral

sign:

∫ 1

0

x

∫ 2

0

y dy dx =

[∫ 1

0

x dx

] [∫ 2

0

y dy

]
=

x2
2

∣∣∣∣∣
x=1

x=0

y2
2

∣∣∣∣∣
y=2

y=0

 =

(
1

2

)(
4

2

)
= 1.

Proposition: If f(x, y) = g(x)h(y) is a product of continuous functions of x and of y,
and R = [a, b]× [c, d], then∫∫

R

f(x, y) dA =

∫∫
R

g(x)h(y) dA =

(∫ b

a

g(x) dx

)(∫ d

c

h(y) dy

)
.
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Another application: Average value.

The average value of f(x, y) on R is given by∫∫
R

f(x, y) dA

area(R)
.

Example: Find the average value of the function f(x, y) = y cos(xy) on the rectangle

R =
[
0,
π

2

]
× [0, 1].

area(R) =
(π

2
− 0
)

(1− 0) =
π

2
.

∫∫
R

f(x, y) dA =

∫ π
2

0

∫ 1

0

y cos(xy) dy dx.

We can integrate y cos(xy) with respect to y using integration by parts. But it’s easier to
change the order of integration.∫∫

R

f(x, y) dA =

∫ 1

0

∫ π
2

0

y cos(xy) dx dy =

∫ 1

0

[
sin(xy)

∣∣∣x=π
2

x=0

]
dy =

∫ 1

0

sin
(π

2
y
)
dy =

2

π

(
− cos

(π
2
y
)) ∣∣∣y=1

y=0
=

2

π
.

Average value of f on R =
2
π
π
2

=
4

π2
.
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Example: Evaluate ∫ 2

1

∫ 1

0

xexy dx dy.
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Example: Find the volume of the region below the plane z = 1, above the surface
z = x2 − 5, and between the planes y = 0 and y = 1.

Hint: First try to draw the region. Pay particular attention to the intersection of the top
and bottom surfaces.

Notice that you are finding the volume of a region between two graphs. Think back to
single-variable calculus and finding the area of a region between two graphs.
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Example: Determine whether the average value of f(x, y) = g(x)h(y) on a rectangle
R = [a, b]× [c, d] is equal to the product of the average value of g(x) on [a, b] and the average
value of h(y) on [c, d].

Note that the average value of g(x) on [a, b] is given by∫ b

a

g(x) dx

length([a, b])
.
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Example: Show that the volume below the surface z = f(x, y) and above the rectangle
R equals the product of the area of R and the average height of the surface on R.

Assuming that this principle also holds for regions R that are not rectangles, find the
average value of f(x, y) =

√
1− x2 − y2 on the unit disc x2 + y2 ≤ 1.
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