Math 11
Fall 2016
Section 1
Monday, October 10, 2016

First, some important points from the last class:

Finding the largest or smallest value of $f\left(x_{1}, \ldots, x_{1}\right)$ is called an optimization problem. Finding the largest or smallest value of $f\left(x_{1}, \ldots, x_{n}\right)$ when $\left(x_{1}, \ldots, x_{n}\right)$ is required to satisfy some condition (for example, $x^{2}+y^{2}=1$) is called a constrained optimization problem, and the condition is the constraint.

When we are trying to maximize or minimize f on a closed, bounded, region, looking at the edge of that region generally involves constraints of the form $g\left(x_{1}, \ldots, x_{n}\right)=k$ (for example, $x^{2}+y^{2}=1$). In other words, $\left(x_{1}, \ldots, x_{n}\right)$ must lie on some level set (level curve, level surface, ...) of g.

The method of Lagrange multipliers is designed to solve exactly this kind of problem.
Theorem (the method of Lagrange multipliers): Suppose $f\left(x_{1}, \ldots, x_{n}\right)$ and $g\left(x_{1}, \ldots, x_{n}\right)$ are differentiable functions, and S is a level set of g, defined by $g\left(x_{1}, \ldots, x_{n}\right)=k$.

If $f\left(x_{1}, \ldots, x_{n}\right)$ has a largest (or smallest) value on S, then it attains that extreme value at a point $\left(x_{1}, \ldots, x_{n}\right)$ at which either

$$
\nabla g\left(x_{1}, \ldots, x_{n}\right)=\overrightarrow{0}
$$

or, for some scalar λ,

$$
\nabla f\left(x_{1}, \ldots x_{n}\right)=\lambda \nabla g\left(x_{1}, \ldots, x_{n}\right)
$$

This means that to solve this problem, we should look for solutions to

$$
\nabla g\left(x_{1}, \ldots, x_{n}\right)=\overrightarrow{0} \quad \& \quad g\left(x_{1}, \ldots, x_{n}\right)=k
$$

and to

$$
\nabla f\left(x_{1}, \ldots, x_{n}\right)=\lambda \nabla g\left(x_{1}, \ldots, x_{n}\right) \quad \& \quad g\left(x_{1}, \ldots, x_{n}\right)=k
$$

Today we look at integrating functions $f(x, y)$.
Example: Find the volume of the region lying above the square $0 \leq x \leq 1,0 \leq y \leq 1$ and below the graph of the function $f(x, y)=x^{2}+y^{2}$.

Method 1: Approximate the volume by adding up the volumes of many skinny rectangular columns, in the same we we approximated the area under a curve by adding up the areas of many skinny rectangles. Take a limit as the number of subdivisions approaches infinity.

For this example, as a not very close approximation, we divide the intervals $0 \leq x \leq 1$ and $0 \leq y \leq 1$ into two subintervals (intervals I_{1}, I_{2} and J_{1}, J_{2}) of lengths $\Delta x=.5$ and $\Delta y=.5$. This divides the square into four subsquares (squares $S_{11}, S_{12}, S_{21}, S_{22}$) each of which has area $\Delta A=\Delta x \Delta y=.25$.

Approximate the volume under the surface above square i, j by the volume of a rectangular column whose height is the same as the height of the surface $z=f(x, y)$ above some point $\left(x_{i j}^{*}, y_{i j}^{*}\right)$ in square i, j. The volume of column i, j is

$$
f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta x \Delta y=\left(\left(x_{i j}^{*}\right)^{2}+\left(y_{i j}^{*}\right)^{2}\right)(.25) .
$$

We add the volumes of all the columns to get our approximation.
For our example, we will take as our $\left(x_{i j}^{*}, y_{i j}^{*}\right)$ the midpoints of our small squares, which are $(.25, .25),(.25, .75),(.75, .25),(.75, .75)$. This gives

$$
\begin{aligned}
& V \approx\left((.25)^{2}+(.25)^{2}\right)(.25)+\left((.25)^{2}+(.75)^{2}\right)(.25)+ \\
& \left((.75)^{2}+(.25)^{2}\right)(.25)+\left((.75)^{2}+(.75)^{2}\right)(.25)=.625 .
\end{aligned}
$$

Method 2: Use volumes by slicing. If slicing our region perpendicular to the x-axis where $x=x_{0}$ yields a slice of area $A\left(x_{0}\right)$, then the volume is

$$
V=\int_{0}^{1} A(x) d x
$$

Pictured below is the cross-section at $x=x_{0}$:

From this picture we have $A\left(x_{0}\right)=\int_{0}^{1} x_{0}^{2}+y^{2} d y$. Therefore, the volume of the solid is

$$
V=\int_{0}^{1} A(x) d x=\int_{0}^{1}\left[\int_{0}^{1} x^{2}+y^{2} d y\right] d x
$$

To compute this, keep in mind that in the inner integral, we are integrating with respect to y, and x is playing the role of a constant:

$$
\int_{0}^{1}\left[\int_{0}^{1} x^{2}+y^{2} d y\right] d x=\left.\int_{0}^{1}\left[y x^{2}+\frac{y^{3}}{3}\right]\right|_{y=0} ^{y=1} d x=\int_{0}^{1}\left[x^{2}+\frac{1}{3}\right] d x=\left.\left[\frac{x^{3}}{3}+\frac{x}{3}\right]\right|_{x=0} ^{x=1}=\frac{2}{3}
$$

This example illustrates integrating a function $f(x, y)$ over a rectangle in the $x y$-plane. Method 1 leads to the definition of double integral, and method 2 leads to a way to compute double integrals.

First, a piece of notation:

$$
R=\{(x, y) \mid a \leq x \leq b \& c \leq y \leq d\}=[a, b] \times[c, d]
$$

denotes the rectangle in \mathbb{R}^{2} whose projection on the horizontal (x) axis is the interval $[a, b]$ and whose projection on the vertical (y) axis is $[c, d]$.

Method 1 leads to the definition of double integral:
Definition: If $R=[a, b] \times[c, d]$ is a rectangle in the $x y$ plane, and $f(x, y)$ is a function whose domain includes R, then

$$
\iint_{R} f(x, y) d A=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A
$$

if this limit exists. The notation means the following:
The intervals $[a, b]$ and $[c, d]$ are divided into m subintervals of length $\Delta x=\frac{b-a}{m}$ and n subintervals of length $\Delta y=\frac{d-c}{n}$, respectively. This divides R into $m n$-many rectangles of area $\Delta A=\Delta x \Delta y$.

The point $\left(x_{i j}^{*}, y_{i j}^{*}\right)$ can be any point in rectangle $i j$, which corresponds to the $i^{\text {th }}$ subinterval of $[a, b]$ and the $j^{t h}$ subinterval of $[c, d]$.

$$
\lim _{m, n \rightarrow \infty}\left(\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A\right)=V
$$

means that for every $\varepsilon>0$ [output accuracy] there is a number N [input accuracy] such that whenever $m, n>N$, no matter how the points $\left(x_{i j}^{*}, y_{i j}^{*}\right)$ are chosen, we have

$$
\left|\left(\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A\right)-V\right|<\varepsilon .
$$

If $\iint_{R} f(x, y) d A$ exists, we say that f is integrable over the rectangle R.
Method 2 leads to a technique for computing double integrals:
Theorem (Fubini's Theorem): If f is continuous on $R=[a, b] \times[c, d]$ then f is integrable on R and

$$
\iint_{R} f(x, y) d A=\overbrace{\int_{a}^{b} \underbrace{\int_{c}^{d} f(x, y) d y}_{c, d \text { limits on } y} d x}^{a, b \text { limits on } x}=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

Note: The textbook says this is proved in advanced mathematics courses. However, we can get a look at the ideas involved. We will post notes about this on the web page.

Example: Find the volume of the area above $R=[0,1] \times[0,2]$ and under the graph of $f(x, y)=x y$.

$$
\int_{0}^{1} \int_{0}^{2} x y d y d x=\int_{0}^{1}\left[\left.\frac{x y^{2}}{2}\right|_{y=0} ^{y=2}\right] d x=\int_{0}^{1} 2 x d x=\left.x^{2}\right|_{x=0} ^{x=1}=1
$$

Notice that writing $\left[\left.\frac{x y^{2}}{2}\right|_{y=0} ^{y=2}\right]$ rather than $\left[\left.\frac{x y^{2}}{2}\right|_{0} ^{2}\right]$ helps to keep things straight.
Another way to approach this particular example: Note that in the inner integral $\int_{0}^{2} x y d y$, we treat x as a constant. Therefore we can move it outside the integral sign:

$$
\int_{0}^{1} \int_{0}^{2} x y d y d x=\int_{0}^{1} x \int_{0}^{2} y d y d x
$$

Now, the inner integral $\int_{0}^{2} y d y$ actually is a constant, so we can move it outside the integral sign:

$$
\int_{0}^{1} x \int_{0}^{2} y d y d x=\left[\int_{0}^{1} x d x\right]\left[\int_{0}^{2} y d y\right]=\left[\left.\frac{x^{2}}{2}\right|_{x=0} ^{x=1}\right]\left[\left.\frac{y^{2}}{2}\right|_{y=0} ^{y=2}\right]=\left(\frac{1}{2}\right)\left(\frac{4}{2}\right)=1
$$

Proposition: If $f(x, y)=g(x) h(y)$ is a product of continuous functions of x and of y, and $R=[a, b] \times[c, d]$, then

$$
\iint_{R} f(x, y) d A=\iint_{R} g(x) h(y) d A=\left(\int_{a}^{b} g(x) d x\right)\left(\int_{c}^{d} h(y) d y\right) .
$$

Another application: Average value.
The average value of $f(x, y)$ on R is given by

$$
\frac{\iint_{R} f(x, y) d A}{\operatorname{area}(\mathrm{R})}
$$

Example: Find the average value of the function $f(x, y)=y \cos (x y)$ on the rectangle $R=\left[0, \frac{\pi}{2}\right] \times[0,1]$.

$$
\begin{gathered}
\operatorname{area}(\mathrm{R})=\left(\frac{\pi}{2}-0\right)(1-0)=\frac{\pi}{2} \\
\iint_{R} f(x, y) d A=\int_{0}^{\frac{\pi}{2}} \int_{0}^{1} y \cos (x y) d y d x
\end{gathered}
$$

We can integrate $y \cos (x y)$ with respect to y using integration by parts. But it's easier to change the order of integration.

$$
\begin{gathered}
\iint_{R} f(x, y) d A=\int_{0}^{1} \int_{0}^{\frac{\pi}{2}} y \cos (x y) d x d y=\int_{0}^{1}\left[\left.\sin (x y)\right|_{x=0} ^{x=\frac{\pi}{2}}\right] d y=\int_{0}^{1} \sin \left(\frac{\pi}{2} y\right) d y= \\
\left.\frac{2}{\pi}\left(-\cos \left(\frac{\pi}{2} y\right)\right)\right|_{y=0} ^{y=1}=\frac{2}{\pi} \\
\text { Average value of } f \text { on } R=\frac{\frac{2}{\pi}}{\frac{\pi}{2}}=\frac{4}{\pi^{2}} .
\end{gathered}
$$

Example: Evaluate

$$
\int_{1}^{2} \int_{0}^{1} x e^{x y} d x d y
$$

Example: Find the volume of the region below the plane $z=1$, above the surface $z=x^{2}-5$, and between the planes $y=0$ and $y=1$.

Hint: First try to draw the region. Pay particular attention to the intersection of the top and bottom surfaces.

Notice that you are finding the volume of a region between two graphs. Think back to single-variable calculus and finding the area of a region between two graphs.

Example: Determine whether the average value of $f(x, y)=g(x) h(y)$ on a rectangle $R=[a, b] \times[c, d]$ is equal to the product of the average value of $g(x)$ on $[a, b]$ and the average value of $h(y)$ on $[c, d]$.

Note that the average value of $g(x)$ on $[a, b]$ is given by

$$
\frac{\int_{a}^{b} g(x) d x}{\operatorname{length}([\mathrm{a}, \mathrm{~b}])}
$$

Example: Show that the volume below the surface $z=f(x, y)$ and above the rectangle R equals the product of the area of R and the average height of the surface on R.

Assuming that this principle also holds for regions R that are not rectangles, find the average value of $f(x, y)=\sqrt{1-x^{2}-y^{2}}$ on the unit disc $x^{2}+y^{2} \leq 1$.

