In class, we considered the function

$$
f(x, y)= \begin{cases}\frac{2 x y}{\sqrt{x^{2}+y^{2}}}, & \text { if }(x, y) \neq(0,0) ; \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

This function is continuous at all points $(x, y) \neq(0,0)$ because it involves polynomials and square roots, and these are continuous inside their domain.

The function is continuous at $(x, y)=(0,0)$ because we squeeze: observe that

$$
\begin{aligned}
0 & \leq y^{2} \\
x^{2} & \leq x^{2}+y^{2} \\
|x| & \leq \sqrt{x^{2}+y^{2}} \\
\frac{|x|}{\sqrt{x^{2}+y^{2}}} & \leq 1
\end{aligned}
$$

for all $(x, y) \neq(0,0)$. Therefore

$$
|f(x, y)|=\left|\frac{2 x y}{\sqrt{x^{2}+y^{2}}}\right|=|2 y|\left(\frac{|x|}{\sqrt{x^{2}+y^{2}}}\right) \leq|2 y|
$$

so

$$
-|2 y| \leq f(x, y) \leq|2 y|
$$

Since $|2 y| \rightarrow 0$ as $(x, y) \rightarrow(0,0)$, by the squeeze theorem, we have

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0=f(0,0)
$$

so f is continuous at $(0,0)$.
We will now show that the function f has partial derivatives, but these partial derivatives are not continuous at $(0,0)$. By definition of the partial derivative at $(0,0)$, we have

$$
f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{2 h \cdot 0-0}{\sqrt{h^{2}+0^{2}}} \cdot \frac{1}{h}=0
$$

and similarly $f_{y}(0,0)=0$. So the function f has its partial derivatives f_{x}, f_{y} at $(0,0)$. Read this as saying: if you slice the surface along the x-axis or the y-axis, then you see a horizontal slope at $(0,0)$. In general, this is the method you would use to compute the partial derivatives (using a limit) if you cannot use a formula.

On the other hand, these partial derivatives are not continuous at $(0,0)$. For $(x, y) \neq(0,0)$, we can compute the partial derivative using the formula (and the quotient rule):

$$
\begin{aligned}
f_{x}(x, y) & =\frac{2 y \sqrt{x^{2}+y^{2}}-(2 x y) \frac{1}{2}(2 x)\left(x^{2}+y^{2}\right)^{-1 / 2}}{\left[\sqrt{x^{2}+y^{2}}\right]^{2}} \\
& =\frac{2 y\left(x^{2}+y^{2}\right)-2 x^{2} y}{\left(x^{2}+y^{2}\right)^{3 / 2}}=\frac{2 y^{3}}{\left(x^{2}+y^{2}\right)^{3 / 2}} .
\end{aligned}
$$

Similarly,

$$
f_{y}(x, y)=\frac{2 x^{3}}{\left(x^{2}+y^{2}\right)^{3 / 2}}
$$

But we claim that the $\operatorname{limit} \lim _{(x, y) \rightarrow(0,0)} f_{x}(x, y)$ does not exist. Along the path $x=t$ and $y=0$, we have the limit

$$
\lim _{t \rightarrow 0} \frac{0}{t^{3}}=0 .
$$

Along the path $x=y=t$, we have the limit

$$
\lim _{t \rightarrow 0} \frac{2 t^{2}}{\left(2 t^{2}\right)^{3 / 2}}=\frac{2}{2^{3 / 2}}=\frac{1}{\sqrt{2}} \neq 0
$$

Because we obtain different limits along different paths, the limit does not exist.
In particular, this shows that the partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ are not continuous at $(0,0)$. To check they are continuous, we would need to have

$$
f_{x}(0,0)=\lim _{(x, y) \rightarrow(0,0)} f_{x}(x, y)
$$

(and the same with f_{y}). So although the left-hand side is $f_{x}(0,0)=0$ and perfectly fine by the above, the right-hand limit does not exist, so the function cannot be continuous there. (If the limit had existed and was equal to 0 , then we would conclude that the partial derivative was continuous, but that is not what happened in this case.)

This function is in fact not differentiable at $(0,0)$: it is not nice, it is not smooth, indeed it folds in on itself at this point. More precisely, it is not well-approximated by its "tangent plane" because this tangent plane does not exist: there is no way to have a plane meet the graph at the point $(0,0,0)$ gracing only the point.

