MATH 11: MULTIVARIABLE CALCULUS WORKSHEET, SECTION 16.2

Problem 1. Compute

$$
\int_{C} x y e^{y z} \mathrm{~d} y
$$

where C is parametrized by $\mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$ between $(0,0,0)$ and $(1,1,1)$.

Problem 2. Find

$$
\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}
$$

where

$$
\mathbf{F}(x, y, z)=\sin x \mathbf{i}+\cos y \mathbf{j}+x z \mathbf{k}
$$

and

$$
\mathbf{r}(t)=t^{3} \mathbf{i}-t^{2} \mathbf{j}+t \mathbf{k}
$$

over the interval $-1 \leq t \leq 1$.

Problem 3. Find the work done by the force field $\mathbf{F}(x, y)=\langle x, y+2\rangle$ on the cycloid

$$
\mathbf{r}(t)=\langle t-\sin t, 1-\cos t\rangle
$$

from $0 \leq t \leq 2 \pi$.

