MATH 11: MULTIVARIABLE CALCULUS WEEK 6 REVIEW

Problem 1. A continuous function f(x, y) defined on the region $0 \le x < 1$ and $|y| \le x$ attains a maximum and minimum value on this region.

Problem 2. Consider the following contour plot of a function f(x, y). Give upper and lower bounds on $\int_0^2 \int_0^2 f(x, y) \, dx \, dy$.

Problem 3. Consider the integral

$$\int_{-r}^{r} \int_{-\sqrt{r^2 - x^2}}^{\sqrt{r^2 - x^2}} \int_{0}^{10} f(x, y, z) \, \mathrm{d}z \, \mathrm{d}y \, \mathrm{d}x.$$

Describe the region of integration in one word.

Problem 4. What are the Cartesian coordinates of the point with cylindrical coordinates $(r, \theta, z) = (4, \pi, 6)$?

Problem 5. What are the spherical coordinates of the point with Cartesian coordinates $(x, y, z) = (0, -\sqrt{3}, 1)$?

Problem 6. Plot the function $r = \cos 3\theta$ and find the area enclosed by it.

Problem 7. Evaluate $\iiint_E (x + y + z) \, dV$ where E is the region in the first octant under $4 - x^2 - y^2$.

Problem 8. What is the average value of $(x^2 + y^2 + z^2)^2$ on the ball of radius R centered at the origin?

Date: Thursday, October 20.