## MATH 11: MULTIVARIABLE CALCULUS WEEK 5 REVIEW

Mark the following true or false. If not otherwise specified,  $f: \mathbb{R}^2 \to \mathbb{R}$  is a function.

**Problem 1.** A figure 8 curve cannot occur as the level curve of a function f.

**Problem 2.** The function  $f(x,t) = \exp(x-t)$  is a solution of the equation  $f_{xx} = f_{tt}$ .

**Problem 3.**  $f_{xxy} = f_{yyx}$  if these partial derivatives exist and are continuous.

**Problem 4.** If  $f(x,y) = \sin x + \sin y$ , then  $|D_{\mathbf{u}}f(x,y)| \le \sqrt{2}$  for all unit vectors  $\mathbf{u}$  and all points (x,y).

**Problem 5.** If f has a local minimum at (a, b) and f is differentiable at (a, b), then  $\nabla f = 0$  at (a, b).

**Problem 6.** If f has two local maxima, then f must have a local minimum.

**Problem 7.** Suppose (a, b) is a critical point of f and  $D = f_{xx}f_{yy} - f_{xy}^2$  has D(a, b) > 0 and  $f_{xx}(a, b) > 0$ . Then (a, b) is a minimum of f(x, y) under the constraint g(x, y) = 1.

Problem 8.

$$\int_{2}^{3} \int_{0}^{1} f(x, y) \, \mathrm{d}x \, \mathrm{d}y = \int_{2}^{3} \int_{0}^{1} f(x, y) \, \mathrm{d}y \, \mathrm{d}x.$$

Problem 9.

$$\int_0^1 \int_0^x \sqrt{x+y^2} \, \mathrm{d}x \, \mathrm{d}y = \int_0^x \int_0^1 \sqrt{x+y^2} \, \mathrm{d}y \, \mathrm{d}x.$$

Problem 10.

$$\int_{3}^{5} \int_{0}^{1} x^{2} \sin(x^{2}y^{3}) \, \mathrm{d}x \, \mathrm{d}y \le 1$$

**Problem 11.** The average value of f(x, y) = g(x)h(y) on the rectangle  $R = [a, b] \times [c, d]$  is equal to the product of the average value of g(x) on [a, b] and the average value of h(y) on [c, d].

Date: Thursday, October 13.

Short answer questions.

**Problem 1**. Classify the function  $f(x, y) = x^2y + xy$  at the origin: local max, local min, saddle point, we cannot tell, or not a critical point.

**Problem 2**. Find the maximum and minimum values of f on the curve g(x, y) = c within the region below.



**Problem 3.** What is the integral of f(x, y) = xy over the unit square  $[0, 1] \times [0, 1]$ ?

**Problem 4**. Let R be the square defined by  $-1 \le x, y \le 1$ . What is the sign of the integral of  $x^4$  over R? Positive, negative, zero, or cannot be determined.

Problem 5. Under what hypotheses does Fubini's theorem apply?

**Problem 6.**  $\int_0^1 \int_0^{2-2x} f(x, y) \, dy \, dx$  is an integral over what region? Sketch it. **Problem 7.**  $\int_0^1 \int_0^{1-x} (1-x-y) \, dy \, dx$  computes the volume of a three-dimensional region. Sketch it.