MATH 11: MULTIVARIABLE CALCULUS WEEK 5 REVIEW

Mark the following true or false. If not otherwise specified, $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a function.
Problem 1. A figure 8 curve cannot occur as the level curve of a function f.
Problem 2. The function $f(x, t)=\exp (x-t)$ is a solution of the equation $f_{x x}=f_{t t}$.
Problem 3. $f_{x x y}=f_{y y x}$ if these partial derivatives exist and are continuous.
Problem 4. If $f(x, y)=\sin x+\sin y$, then $\left|D_{\mathbf{u}} f(x, y)\right| \leq \sqrt{2}$ for all unit vectors \mathbf{u} and all points (x, y).
Problem 5. If f has a local minimum at (a, b) and f is differentiable at (a, b), then $\nabla f=0$ at (a, b).
Problem 6. If f has two local maxima, then f must have a local minimum.
Problem 7. Suppose (a, b) is a critical point of f and $D=f_{x x} f_{y y}-f_{x y}^{2}$ has $D(a, b)>0$ and $f_{x x}(a, b)>0$. Then (a, b) is a minimum of $f(x, y)$ under the constraint $g(x, y)=1$.
Problem 8.

$$
\int_{2}^{3} \int_{0}^{1} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{2}^{3} \int_{0}^{1} f(x, y) \mathrm{d} y \mathrm{~d} x
$$

Problem 9.

$$
\int_{0}^{1} \int_{0}^{x} \sqrt{x+y^{2}} \mathrm{~d} x \mathrm{~d} y=\int_{0}^{x} \int_{0}^{1} \sqrt{x+y^{2}} \mathrm{~d} y \mathrm{~d} x
$$

Problem 10.

$$
\int_{3}^{5} \int_{0}^{1} x^{2} \sin \left(x^{2} y^{3}\right) \mathrm{d} x \mathrm{~d} y \leq 1
$$

Problem 11. The average value of $f(x, y)=g(x) h(y)$ on the rectangle $R=[a, b] \times[c, d]$ is equal to the product of the average value of $g(x)$ on $[a, b]$ and the average value of $h(y)$ on $[c, d]$.

Short answer questions.
Problem 1. Classify the function $f(x, y)=x^{2} y+x y$ at the origin: local max, local min, saddle point, we cannot tell, or not a critical point.

Problem 2. Find the maximum and minimum values of f on the curve $g(x, y)=c$ within the region below.

Problem 3. What is the integral of $f(x, y)=x y$ over the unit square $[0,1] \times[0,1]$?
Problem 4. Let R be the square defined by $-1 \leq x, y \leq 1$. What is the sign of the integral of x^{4} over R ? Positive, negative, zero, or cannot be determined.

Problem 5. Under what hypotheses does Fubini's theorem apply?
Problem 6. $\int_{0}^{1} \int_{0}^{2-2 x} f(x, y) \mathrm{d} y \mathrm{~d} x$ is an integral over what region? Sketch it.
Problem 7. $\int_{0}^{1} \int_{0}^{1-x}(1-x-y) \mathrm{d} y \mathrm{~d} x$ computes the volume of a three-dimensional region.
Sketch it.

