MATH 11: MULTIVARIABLE CALCULUS MIDTERM 2 REVIEW

Problem 1. Short answers.
(a) Let $(\nabla f)(1,1)=\langle 3,-5\rangle$. What are the signs of the directional derivative of f at $(1,1)$ in the direction \nwarrow and \downarrow ?
(b) True or false: the function $f(x, y)=x^{2} y+4 x y+4 y$ has a local maximum at the origin.
(c) Maximize $x^{2} y^{2}$ subject to $x^{2}+y^{2}=4$.

Problem 2. Evaluate the integral

$$
\iint_{R} x^{3} \sin \left(x^{2} y\right) \mathrm{d} A
$$

over the rectangle R with $0 \leq x \leq \sqrt{\pi / 2}$ and $0 \leq y \leq 2$.

Problem 3. Find the local maxima and minima of $f(x, y)=y^{2}-2 y \cos x$.

Problem 4. What is the average value of the function $f(x, y)=x y$ on the region bounded by the curves $y=8 \sqrt{x}$ and $y=x^{2}$?

Problem 5. Let D be the circle of radius a. Compute $\iint_{D} e^{-x^{2}-y^{2}} \mathrm{~d} A$. What is the limit as $a \rightarrow \infty$?

Problem 6. Rewrite the integral

$$
\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} \int_{r}^{\sqrt{4-r^{2}}} f(r, \theta, z) r \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta
$$

in the orders $\mathrm{d} r \mathrm{~d} z \mathrm{~d} \theta$ and $\mathrm{d} \theta \mathrm{d} z \mathrm{~d} r$, and convert to spherical coordinates (in any order).

Problem 7. Consider the region R bounded on 4 sides by the curves

$$
x y=1, x y=4, x=y, \text { and } y=3 x .
$$

Sketch the region R. Under the transformation T defined by $u=x y, v=y / x$, what does the region R become? Use this change of coordinates to evaluate

$$
\iint_{R} e^{x y} \mathrm{~d} A
$$

Problem 8. Let $f(x, y)=\log (1+x y)$.
(a) Compute the gradient of f at $P=(2,3)$.
(b) Find a unit vector in the direction of steepest ascent for f at P; what is the maximal rate of change?
(c) Find the unit vectors in the direction of no change for f at P.
(d) Sketch the level curves of f in the first quadrant (including the point P) and the unit vectors in (b) and (c).

