MATH 11: MULTIVARIABLE CALCULUS MIDTERM 2 REVIEW

Problem 1. Short answers.

- (a) Let $(\nabla f)(1,1) = \langle 3,-5 \rangle$. What are the signs of the directional derivative of f at (1,1) in the direction \nwarrow and \downarrow ?
- (b) True or false: the function $f(x, y) = x^2y + 4xy + 4y$ has a local maximum at the origin.
- (c) Maximize x^2y^2 subject to $x^2 + y^2 = 4$.

Date: Monday, October 24.

Problem 2. Evaluate the integral

$$\iint_R x^3 \sin(x^2 y) \, \mathrm{d}A$$
 over the rectangle R with $0 \le x \le \sqrt{\pi/2}$ and $0 \le y \le 2.$

Problem 3. Find the local maxima and minima of $f(x, y) = y^2 - 2y \cos x$.

Problem 4. What is the average value of the function f(x, y) = xy on the region bounded by the curves $y = 8\sqrt{x}$ and $y = x^2$?

Problem 5. Let *D* be the circle of radius *a*. Compute $\iint_D e^{-x^2-y^2} dA$. What is the limit as $a \to \infty$?

Problem 6. Rewrite the integral

$$\int_0^{2\pi} \int_0^{\sqrt{2}} \int_r^{\sqrt{4-r^2}} f(r,\theta,z) r \,\mathrm{d}z \,\mathrm{d}r \,\mathrm{d}\theta$$

in the orders $dr dz d\theta$ and $d\theta dz dr$, and convert to spherical coordinates (in any order).

Problem 7. Consider the region R bounded on 4 sides by the curves

$$xy = 1, xy = 4, x = y, and y = 3x.$$

Sketch the region R. Under the transformation T defined by u = xy, v = y/x, what does the region R become? Use this change of coordinates to evaluate

$$\iint_R e^{xy} \, \mathrm{d}A.$$

Problem 8. Let $f(x, y) = \log(1 + xy)$.

- (a) Compute the gradient of f at P = (2,3).
- (b) Find a unit vector in the direction of steepest ascent for f at P; what is the maximal rate of change?
- (c) Find the unit vectors in the direction of no change for f at P.
- (d) Sketch the level curves of f in the first quadrant (including the point P) and the unit vectors in (b) and (c).