Your name:

Instructor (please circle):

Barnett

Van Erp

Math 11 Fall 2010: written part of HW8 (due Wed Nov 17)

Please show your work. No credit is given for solutions without justification.

(1) (a) Consider the vector field

$$\mathbf{F} = \left\langle \frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2} \right\rangle,$$

and the curve C parametrized as $\mathbf{r}(t) = \langle t, \sin \pi t \rangle$, with $1 \leq t \leq 2$. Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$. Explain how you got your answer.

(b) The vector field **F** is not continuous at (x, y) = (0, 0). Nevertheless, **F** is a conservative vector field. Show this directly by finding a potential function f(x, y) for **F**.

(c) Let C be the ellipse $\frac{x^2}{4} + \frac{y^2}{16} = 1$, with counter clockwise orientation. Observe that the ellipse circles around the singular point (0,0). Find the value of $\oint_C \mathbf{F} \cdot d\mathbf{r}$. Justify your answer.

(2) Let C be the closed curve composed of the segment of the parabola $y = x^2$, for $-2 \le x \le 2$, and the straight line segment connecting point (2, 4) and (-2, 4). Assume that C is oriented counter clockwise. Find the value of the line integral $\oint_C x^2 y \, dx + \ln(y) \, dy$. Explain your solution.

(3) Find the area of the region D that is bounded by the curve $\mathbf{r}(t) = \langle 1 - t^2, t^2 - t^3 \rangle$, with $0 \le t \le 1$, and the *x*-axis. Suggestion: Use Green's Theorem.