Your name:
Instructor (please circle): Barnett Van Erp
Math 11 Fall 2010: written part of HW8 (due Wed Nov 17)
Please show your work. No credit is given for solutions without justification.
(1) (a) Consider the vector field

$$
\mathbf{F}=\left\langle\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right\rangle,
$$

and the curve C parametrized as $\mathbf{r}(t)=\langle t, \sin \pi t\rangle$, with $1 \leq t \leq 2$. Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$. Explain how you got your answer.
(b) The vector field \mathbf{F} is not continuous at $(x, y)=(0,0)$. Nevertheless, \mathbf{F} is a conservative vector field. Show this directly by finding a potential function $f(x, y)$ for \mathbf{F}.
(c) Let C be the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{16}=1$, with counter clockwise orientation. Observe that the ellipse circles around the singular point $(0,0)$. Find the value of $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$. Justify your answer.
(2) Let C be the closed curve composed of the segment of the parabola $y=x^{2}$, for $-2 \leq x \leq 2$, and the straight line segment connecting point $(2,4)$ and $(-2,4)$. Assume that C is oriented counter clockwise. Find the value of the line integral $\oint_{C} x^{2} y d x+\ln (y) d y$. Explain your solution.
(3) Find the area of the region D that is bounded by the curve $\mathbf{r}(t)=\left\langle 1-t^{2}, t^{2}-t^{3}\right\rangle$, with $0 \leq t \leq 1$, and the x-axis. Suggestion: Use Green's Theorem.

