Homework for Chapter 5: Due January 27

1. Given an n by n nonsingular matrix A, how do you efficiently solve the following problems using Gaussian elimination with partial pivoting?
(a) Solve the linear system $A^{k} x=b, k$ is a positive integer.
(b) Compute $\alpha=c^{T} A^{-1} b$.
(c) Solve the matrix equation $A X=B$, where B is n by m.

You should (1) describe your algorithms, (2) present them in pseudo-code (using a MATLABlike language) and (3) estimate the cost by giving the rquired flops.
2. Matrix A is called strictly column diagonally dominant, or diagonally dominant for short, if

$$
\left|a_{i i}\right|>\sum_{j=1, j \neq i}\left|a_{j i}\right| .
$$

(a) Show that A is nonsingular. Hint: Use Gershgorin's theorem.
(b) Show that Gaussian elimination with partial pivoting does not actually permute any rows, that is, it is identical to Gaussian elimination without pivoting. Hint: Show that after one step of Gaussian elimination, the trailing $(n-1) \times(n-1)$ submatrix, the Schur complement of a_{11} in A, is still diagonally dominant.

3 . Consider the 2×2 linear system of equations

$$
A x=\left[\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=b .
$$

We will use two methods to solve it.

- Algorithm 1: Gaussian elimination with partial pivoting.
- Algorithm 2: Cramer's rule

$$
\begin{aligned}
\operatorname{det} & =a_{11} * a_{22}-a_{12} * a_{11} \\
x_{1} & =\left(a_{22} * b_{1}-a_{12} * b_{2}\right) / \text { det } \\
x_{2} & =\left(-a_{21} * b_{1}+a_{11} * b_{2}\right) / \text { det }
\end{aligned}
$$

Show by means of a numerical example that Cramer's rule is not backward stable. Hint: Choose the matrix A to be neary singular and $b \approx \mathbf{a}_{2}$ (the second column of A). What does backward stability imply about the size of the residual?

