Math 116 Numerical PDEs: Homework 5

due Fri midnight, Oct 31

1. Basic fitting of convergence rates (easy). Say an exponentially-convergent numerical procedure gives error $E_{n}=10^{-5}$ at $n=10$ and $E_{n}=10^{-12}$ at $n=20$. Assuming it is in its asymptotic regime, find K such that $E_{n}=c K^{-n}$. Find α such that $E_{n}=c e^{-\alpha n}$. [Please use either number to discuss rates from now on; both have their merits].
2. (a) If A is a bounded operator, and B a compact operator, prove that $A B$ is compact.
(b) Prove that $C([0,1])$ is not a complete space in the L^{2} norm. [Hint: construct a sequence $\left(u_{n}\right)$ of steeper and steeper functions which you can show are Cauchy convergent, but whose limit is not continuous]
3. Continuation of last question of HW4.
(a) Use your answer to b) from that question to write an explicit formula for the solution u to $(I-K) u=f$ in terms of the function f and the coefficients $\left\{k_{m}\right\}$, and massage it into the form of an integral operator with new kernel acting on f. Congratulations: you've just used the 'spectral representation' to write the kernel of $(I-K)^{-1}$!
(b) What is the condition on $\left\{k_{m}\right\}$ such that $(I-K)^{-1}$ exists (and is bounded)?
(c) Say the coefficients obey $k_{m}=O\left(|m|^{-1}\right)$ as $|m| \rightarrow \infty$. What can you say about compactness of K in $L^{2}[0,2 \pi)$? [Hint: construct a sequence $\left(K_{n}\right)$ of finite-dimensional approximations to K and consider the norm of $\left.K_{n}-K\right]$.
(d) BONUS: Find the weakest condition you can on $\left\{k_{m}\right\}$ that implies compactness of K in $L^{2}[0,2 \pi)$. Discuss the consequences for the possible limit points of the eigenvalues λ_{m} as $|m| \rightarrow \infty$.
4. The fundamental solution for Laplace's equation in 2D is $\Phi(x, y)=-(1 / 2 \pi) \ln |x-y|$. Here you set up essential machinery for double-layer representations.
(a) Make a function which returns the normal derivative $\partial \Phi(x, y) / \partial n_{y}$ given vectors $x, y \in \mathbb{R}^{2}$ and the unit vector $n_{y} \in \mathbb{R}^{2}$. Generalize your routine so that it handles multiple x vectors (e.g. a 2 -by- n matrix of coordinates of n such vectors), and returns the corresponding list of outputs. [Be sure to test it on known inputs].
(b) Use the above to produce a contour plot of $\partial \Phi(x, y) / \partial n_{y}$ for $y=0, n_{y}=(1,0)$, for x in the square $[-1,1]^{2}$. This should be a 3 -line program.
(c) Consider the circle Γ defined by $y(t)=(\cos t, \sin t)$ for $t \in[0,2 \pi)$, on which arclength is simply t. Use periodic trapezoidal quadrature with $n=20$, and your above function, to write a code which approximates the boundary integral

$$
\begin{equation*}
u(x)=\int_{0}^{2 \pi} \frac{\partial \Phi(x, y(t))}{\partial n_{y(t)}} d t \tag{1}
\end{equation*}
$$

for a set of points x. Note this is the double-layer operator, $u=D \tau$, acting on the function $\tau \equiv 1$. Use this to make a 3 D plot of $u(x)$, for x in the square $[-1,1]^{2}$. Check that interior values are roughly -1 , and exterior zero.
(d) Use the change-of-variables formula to generalize your above code to the closed curve Γ defined by $y(t)=(R(t) \cos t, R(t) \sin t)$ where $R(t)=1+a \cos (3 t)$ is a periodic polar function. Choose the 'wobbliness parameter' $a=0.3$. [Hint: you'll need to figure out the 'speed function' $\left|y^{\prime}(t)\right|$]. Thus make a 3D plot of

$$
\begin{equation*}
u(x)=\int_{\Gamma} \frac{\partial \Phi(x, y(t))}{\partial n_{y(t)}} d s_{y} \tag{2}
\end{equation*}
$$

which is again $u=D \tau$ for $\tau \equiv 1$, over x in the square $[-2,2]^{2}$.
(e) The above plot should approximate -1 inside Γ; make a contour plot of $\log _{10}$ of the absolute deviation from this value over the interior of Γ. How does the error seem to vary in the domain?
(f) For the fixed location $x=(0.2,0.1)$, show convergence vs n of this error on an appropriate plot, and state the convergence order or rate. What n is needed to reach the minimum error? BONUS: How does the above depend on the choice of point x ?

