Math 116 Numerical PDEs: Homework 4

due Fri midnight, Oct 24

1. [Jon's question]
(a) Plot the graph of the function $x \mapsto \int_{[-1,1]} \sqrt{1-y^{2}} e^{x-y^{2}} d y$ on the interval $[0,1]$.
(b) Prove that all of the roots of polynomial which defines the nodes for $(n+1)$-node Gaussian quadrature are simple. [Hint: Assume that the roots are not unique. Glancing at the proof showing you can't integrate exactly all polynomials of degree $2 n+2$ may help.]
2. Solve analytically the rank-1 second-kind integral equation,

$$
\begin{equation*}
u(s)+\int_{0}^{1} s t^{3} u(t) d t=1, \quad \text { for } s \in[0,1] \tag{1}
\end{equation*}
$$

[Hint if stuck: u is the RHS plus something in the range of K, the integral operator]. Compute $\|K\|_{\infty}$. Is K compact? (why?)
3. Code up the 1D Nyström method in a way that allows you to switch easily between different quadrature schemes (e.g. by setting a switch variable at the start of your code). Apply it to the second-kind Fredholm equation

$$
\begin{equation*}
e^{s}+\int_{0}^{1} e^{s t} u(t) d t=e^{s}+\frac{1}{s+1}\left(e^{s+1}-1\right) \tag{2}
\end{equation*}
$$

which you can check has exact solution $u(t)=e^{t}$.
(a) Produce plots that show the convergence vs N, the number of nodes, of the maximum error magnitude in u over the nodes, for the two schemes: i) composite trapezoid, and ii) Gaussian quadrature. Categorize the convergence in each case and relate it to that of the quadrature scheme. What N is required in each case to reach an error smaller than 10^{-5} ?
(b) How does the condition number of the linear system you are solving change with N ? (You don't need to plot this, just describe).
(c) At $N=5$ for Gaussian quadrature, produce a plot of the difference between the Nyström solution for $u(t)$ and the exact solution, over the interval $[0,1]$. (Don't show the two functions, just subtract them). Overlay the 5 nodes onto your graph. Is the true error sup norm of the solution reflected by the maximum error magnitude in u over the nodes, as you assumed in the previous part?
4. Naively adjust your code to attempt to solve the first-kind Fredholm equation on the periodic interval $[0,2 \pi)$,

$$
\begin{equation*}
\int_{0}^{2 \pi} e^{a \cos (s-t)} u(t) d t=2 \pi I_{0}\left(\sqrt{1+2 a \cos (s)+a^{2}}\right) \tag{3}
\end{equation*}
$$

where $I_{0}(\cdot)$ is the modified regular Bessel function of order zero (see Matlab's besseli ($0, \ldots$) or Python's scipy.special.iv $(0, \ldots))$. This has the exact solution $u(t)=e^{\cos (t)}$, trust me. However, such deconvolution problems are ill-posed! (infinite condition number, i.e. u is arbitrarily sensitive to changes in f). Nevertheless, attempt to use our preferred quadrature scheme for smooth periodic functions.
(a) Choose the value $a=0.5$ and plot the sup norm of the solution error at the nodes, as a function of $N=2,3, \ldots, 30$, choosing axes which show the behavior.
(b) Explain why the convergence behavior eventually does what it does. [Hint: see part b of previous question]. This shows the problem with first-kind IE's when no regularization is used. In contrast, second-kind are always stable.
5. Here you explore analytically how Fredholm equations with convolution kernels, that is kernels of the form $k(s, t)=k(t-s)$ on the interval $[0,2 \pi)$, where $k: \mathbb{R} \rightarrow \mathbb{C}$ is a 2π-periodic function, become trivial in the Fourier basis.
(a) Show that $e^{i m t}, m \in \mathbb{Z}$, is an eigenfunction of any convolution operator K (i.e. integral operator with convolution kernel k), and find its eigenvalue λ_{m}.
(b) By writing $f(s)=\sum_{m \in \mathbb{Z}} f_{m} e^{-i m s}$ and similar for u and k, convert the first-kind Fredholm equation $K u=f$ into a set of relations involving the Fourier representations $\left\{f_{m}\right\},\left\{u_{m}\right\}$ and $\left\{k_{m}\right\}$. [Hint: you'll need orthogonality of $\left\{e^{i m t}\right\}$ on $[0,2 \pi)$]
(c) Thus use Parseval's equality to find a formula for $\|K\|_{2}$, i.e. the operator norm from $L^{2}([0,2 \pi))$ to itself, and express boundedness as a condition on the set $\left\{k_{m}\right\}$.
(d) BONUS: Say k is square-integrable on $[0,2 \pi)$. Can you prove something about the boundedness of K ? Can you do the same for K^{-1} ?

