
Math 116 Numerical PDEs: Homework 4

due Fri midnight, Oct 24

1. [Jon’s question]

(a) Plot the graph of the function x 7→
∫

[−1,1]

√

1 − y2ex−y
2

dy on the interval [0, 1].

(b) Prove that all of the roots of polynomial which defines the nodes for (n + 1)-node Gaussian
quadrature are simple. [Hint: Assume that the roots are not unique. Glancing at the proof
showing you can’t integrate exactly all polynomials of degree 2n + 2 may help.]

2. Solve analytically the rank-1 second-kind integral equation,

u(s) +

∫ 1

0

st3u(t)dt = 1, for s ∈ [0, 1] (1)

[Hint if stuck: u is the RHS plus something in the range of K, the integral operator]. Compute ‖K‖∞.
Is K compact? (why?)

3. Code up the 1D Nyström method in a way that allows you to switch easily between different quadrature
schemes (e.g. by setting a switch variable at the start of your code). Apply it to the second-kind
Fredholm equation

es +

∫ 1

0

estu(t)dt = es +
1

s + 1
(es+1 − 1) (2)

which you can check has exact solution u(t) = et.

(a) Produce plots that show the convergence vs N , the number of nodes, of the maximum error
magnitude in u over the nodes, for the two schemes: i) composite trapezoid, and ii) Gaussian
quadrature. Categorize the convergence in each case and relate it to that of the quadrature
scheme. What N is required in each case to reach an error smaller than 10−5?

(b) How does the condition number of the linear system you are solving change with N? (You don’t
need to plot this, just describe).

(c) At N = 5 for Gaussian quadrature, produce a plot of the difference between the Nyström solution
for u(t) and the exact solution, over the interval [0, 1]. (Don’t show the two functions, just subtract
them). Overlay the 5 nodes onto your graph. Is the true error sup norm of the solution reflected
by the maximum error magnitude in u over the nodes, as you assumed in the previous part?

4. Naively adjust your code to attempt to solve the first-kind Fredholm equation on the periodic interval
[0, 2π),

∫ 2π

0

ea cos(s−t)u(t)dt = 2πI0

(

√

1 + 2a cos(s) + a2
)

(3)

where I0(·) is the modified regular Bessel function of order zero (see Matlab’s besseli(0,...) or
Python’s scipy.special.iv(0,...)). This has the exact solution u(t) = ecos(t), trust me. However,
such deconvolution problems are ill-posed ! (infinite condition number, i.e. u is arbitrarily sensitive
to changes in f). Nevertheless, attempt to use our preferred quadrature scheme for smooth periodic
functions.
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(a) Choose the value a = 0.5 and plot the sup norm of the solution error at the nodes, as a function
of N = 2, 3, . . . , 30, choosing axes which show the behavior.

(b) Explain why the convergence behavior eventually does what it does. [Hint: see part b of previous
question]. This shows the problem with first-kind IE’s when no regularization is used. In contrast,
second-kind are always stable.

5. Here you explore analytically how Fredholm equations with convolution kernels, that is kernels of the
form k(s, t) = k(t−s) on the interval [0, 2π), where k : R → C is a 2π-periodic function, become trivial
in the Fourier basis.

(a) Show that eimt, m ∈ Z, is an eigenfunction of any convolution operator K (i.e. integral operator
with convolution kernel k), and find its eigenvalue λm.

(b) By writing f(s) =
∑

m∈Z
fme−ims and similar for u and k, convert the first-kind Fredholm

equation Ku = f into a set of relations involving the Fourier representations {fm}, {um} and
{km}. [Hint: you’ll need orthogonality of {eimt} on [0, 2π)]

(c) Thus use Parseval’s equality to find a formula for ‖K‖2, i.e. the operator norm from L2([0, 2π))
to itself, and express boundedness as a condition on the set {km}.

(d) BONUS: Say k is square-integrable on [0, 2π). Can you prove something about the boundedness
of K ? Can you do the same for K−1 ?


