
THE JORDAN-VON NEUMANN THEOREM

Proposition 1. Suppose that X is a complex1 Banach space whose norm satisfies

the parallelogram law:

(1) ‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2.

Then X is a Hilbert space. More precisely, the form

(2) (x | y) :=
1

4

3∑

k=0

ik‖x + iky‖2

is an inner product on X such that (x | x) = ‖x‖2.

We proceed with a sequence of lemmas.

Lemma 2. For each x ∈ X, (x | x) = ‖x‖2.

Proof. Using the homogeneity of ‖ · ‖:

4(x | x) = ‖2x‖2 + i‖(1 + i)x‖2 − 0 − i‖(1 − i)x‖2 = 4‖x‖2. �

Corollary 3. For all x ∈ X, (x | x) ≥ 0 and (x | x) = 0 only if x = 0.

Lemma 4. For all x, y ∈ X, we have (y | x) = (x | y).

Proof. Again, using the homogeneity of ‖ · ‖:

4(x | y) = ‖x + y‖ + i‖x + iy‖ − ‖x − y‖ − i‖x − iy‖

= ‖x + y‖ + i‖y − ix‖ − ‖y − x‖ − i‖y + ix‖

= 4(y | x) �

The next lemma is the key step. Of course, it was suggested by the exercise in
Knapp’s book. Nevertheless, it still found it tricky to work out. I am confident
that there is a better way.

Lemma 5. For all x, y, z ∈ X, we have

(3) ‖x + y + z‖2 = ‖x + y‖2 + ‖x + z‖2 + ‖y + z‖2 − ‖x‖2 − ‖y‖2 − ‖z‖2.

This proof was taken from [1, Chap. XII §7 Exercises 19–24.]
1This proof can be easily modified for a real Banach space: simply replace (2) with

(†) (x | y) :=
1

4

`

‖x + y‖2 − ‖x − y‖2
´

.
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Proof. We make repeated use of the parallelogram law (to the indicated term):

‖x + y + z‖2 = 2‖x + y‖2 + 2‖z‖2 − ‖x + y − z‖2

= ‖x + y‖2 + ‖z‖2 + ‖x + y‖2 + ‖z‖2

︸ ︷︷ ︸
−‖x + y − z‖2

= ‖x + y‖2 + ‖z‖2 +
1

2
‖x + y + z‖2

︸ ︷︷ ︸
−

1

2
‖x + y − z‖2

= ‖x + y‖2 + ‖z‖2 +
1

2

(
2‖x + z‖2 + 2‖y‖2 − ‖x − y + z‖2

)
−

1

2
‖x + y − z‖2

= ‖x + y‖2 + ‖x + z‖2 + ‖y‖2 + ‖z‖2 −
1

2

(
‖x − y + z‖2 + ‖x + y − z‖2

︸ ︷︷ ︸

)

= ‖x + y‖2 + ‖x + z‖2 + ‖y‖2 + ‖z‖2

︸ ︷︷ ︸
−‖x‖2 − ‖z − y‖2

= ‖x + y‖2 + ‖x + z‖2 +
1

2
‖y + z‖2 +

1

2
‖z − y‖2 − ‖x‖2 − ‖z − y‖2

= ‖x + y‖2 + ‖x + z‖2 +
1

2
‖y + z‖2 − ‖x‖2 −

1

2
‖z − y‖2

︸ ︷︷ ︸

= ‖x + y‖2 + ‖x + z‖2 +
1

2
‖y + z‖2 − ‖x‖2 −

1

2

(
2‖y‖2 + 2‖z‖2 − ‖y + z‖2

)

= ‖x + y‖2 + ‖x + z‖2 + nsy + z‖x‖2 − ‖y‖2 − ‖z‖2. �

Having successfully dealt with that messy computation, the fact that the poten-
tial inner product preserves sums is easy.

Lemma 6. For all x, y, z ∈ X, we have (x + y | x) = (x | z) + (y | z).

Proof. The essential observation is that
∑3

k=0 ik = 1 + i − 1 − i = 0. Then using
Lemma 5, we have

4(x + y | x) =
3∑

k=0

ik‖x + y + ikz‖2

=

3∑

k=0

ik
(
‖x + y‖2 + ‖x + ikz‖2 + ‖y + ikz‖2 − ‖x‖2 − ‖y‖2 − ‖z‖2

)

= 0 +

3∑

k=0

‖x + ikz‖2 +

3∑

k=0

‖y + ikz‖2 + 0 + 0 + 0

= 4(x | z) + 4(y | z). �

It would seem now that we are all but done. But showing that the potential
inner product respects scalar multiplication is not so easy. We have to work with
the complex rationals D = Q + iQ.

Lemma 7. Suppose that r ∈ D and that x, y ∈ X, then (rx | y) = r(x | y).

Proof. It follows immediately from Lemma 6, that for all n ∈ N, we have (nx |
y) = n(x | y). It is then a simple matter to see that (rx | y) = r(x | y) for all
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r ∈ Q. On the other hand,

4(ix | y) =

3∑

k=0

ik‖ix + iky‖2

= ‖ix + y‖2 + i‖ix + iy‖2 − ‖ix − y‖2 − i‖ix − iy‖2

which, by homogeneity, is

= i
(
−i‖x − iy‖2 + ‖x + y‖2 − i‖x − iy‖2 − ‖x − y‖2

)

= 4i(x | y).

combining this with the first part of the proof and Lemma 6 gives the result. �

Upgrading from r ∈ Q to c ∈ C requires that we prove that the Cauchy Schwarz
inequality holds using only the tools at our disposal so far. Fortunately, the usual
proofs works just fine.

Lemma 8. For all x, y ∈ X, |(x | y)| ≤ ‖x‖‖y‖.

Proof. We can assume that y 6= 0. Note that for all r ∈ D,

0 ≤ ‖x − ry‖2 = (x − ry | x − ry)

= ‖x‖2 − 2Re r̄(x | y) + |r|2‖y‖2.

But we can find a sequence or rationals rn → (x|y)
‖y‖2 . Then taking limits in the above,

0 ≤ ‖x‖2 − 2
|(x | y)|

‖y‖2
+

|(x | y)|

‖y‖2
,

and the result follows. �

Lemma 9. For all c ∈ C, we have (cx | y) = c(x | y).

Proof. Let rn → c with each rn ∈ D. Then using Lemma 8, we have

|(rnx | y) − (cx | y)| ≤ |rn − c|‖x‖‖y‖,

and (rnx | y) → (cx | y). But by Lemma 7, (rnx | y) = rn(x | y) → c(x | y). This
suffices. �

Proof of Proposition 1. It follows from Lemma 6 and Lemma 9 that (· | ·) is linear
in its first variable. By Lemma 4 it is conjugate linear in its second variable, and
both positive and definite by Corollary 3. Therefore (· | ·) is an inner product.
It defines the original, and therefore complete, norm on X by Lemma 2. The
Proposition follows. �
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