## Homework Assignment \#5 Due Friday March 9th.

1. Suppose that $P \in B(\mathcal{H})$ is a projection (that is, $P=P^{*}=P^{2}$ ). Show that $P(\mathcal{H})$ is closed and that $P$ is the orthogonal projection onto $W:=P(\mathcal{H})$
2. Let $\left\{e_{j}\right\}_{j \in J}$ be an orthonormal basis for $\mathcal{H}$. Show that $U$ is unitary if and only if $\left\{U e_{j}\right\}_{j \in J}$ is an orthonormal basis for $\mathcal{H}$.
3. Let $\Theta_{x, y}$ be the rank-one operator $\Theta_{x, y}(z):=(z \mid y) x$. Suppose that $T \in B(H)$.
(a) Show that $T \Theta_{x, y}=\Theta_{T x, y}$ and $\Theta_{x, y} T=\Theta_{x, T^{*} y}$.
(b) Show that $\left(\Theta_{x, y}\right)^{*}=\Theta_{y, x}$.
(c) Show that $\left\|\Theta_{x, y}\right\|=\|x\|\|y\|$.
(d) Show that $T \in B_{f}(H)$ if and only if $T(H)$ is finite dimensional.
(e) Show that if $T \in B_{f}(H)$, then $T^{*} \in B_{f}(H)$, and that if $T \in B_{f}(H)$ and $S \in B(H)$, then both $T S$ and $S T$ are in $B_{f}(H)$.
4. Suppose that $P$ and $Q$ are projections in $B(H)$. We say that $P \perp Q$ if $P(H) \perp Q(H)$ and that $P \leq Q$ if $P(H) \subset Q(H)$.
(a) Show that the following are equivalent.
(i) $P \perp Q$.
(ii) $P Q=Q P=0$.
(iii) $P+Q$ is a projection.
(b) Show that the following are equivalent.
(i) $P \leq Q$.
(ii) $P Q=Q P=P$.
(iii) $Q-P$ is a projection.
(Hint: Note that $P Q P$ is a positive operator. Also $P Q P=P Q(P Q)^{*}$ so that $P Q P=0$ if and only if $P Q=Q P=0$.)
5. Work E 3.3.1 in the text.
6. Work E 3.3.2 in the text.
7. Work E 3.3.4 in the text.
8. Recall that we can identify the dual $H^{*}$ of a Hilbert space $H$ with itself via the conjugate linear isomorphism $\Phi: H \rightarrow H^{*}$ given by $\Phi(x)(y):=(y \mid x)$. Then we have two definitions for the adjoint: $T^{*}: H \rightarrow H$ as in Theorem 3.2.3 and $T^{*}: H^{*} \rightarrow H^{*}$ as in 2.3.9. How do they compare. What does Proposition 2.4.12 say about adjoints a la Chapter 3? Are any of these statements hard to prove directly?
