Homework Assignment \#4 Due Wednesday, February $28^{\text {th }}$

1. In this problem, X will be a separable Banach space. Let B^{*} be the closed unit ball in X^{*}. We want to work out a solution to E 2.5.3 in the text. Work out your own solution, or follow the guidelines below.
(a) Show that a subset of separable metric space is separable so that we can find a countable dense subset $\left\{d_{k}\right\}_{k=1}^{\infty}$ of the unit sphere $S=\{x \in X:\|x\|=1\}$ in X. (Hint: a separable metric space is second countable.)
(b) For each k, show that $m_{k}(\varphi):=\left|\varphi\left(d_{k}\right)\right|$ is a seminorm on X^{*} such that $m_{k}(\varphi) \leq 1$ on B^{*}.
(c) Show that a net $\left\{\varphi_{j}\right\}$ in B^{*} converges to $\varphi \in B^{*}$ in the weak-* topology if and only if $m_{k}\left(\varphi_{j}-\varphi\right) \rightarrow 0$ for all k.
(d) For each $\varphi, \psi \in B^{*}$, define

$$
\rho(\varphi, \psi):=\sum_{n=1}^{\infty} \frac{m_{n}(\varphi-\psi)}{2^{n}} .
$$

Show that ρ is a metric on B^{*}.
(e) Show that a net $\left\{\varphi_{j}\right\}$ in B^{*} converges to $\varphi \in B^{*}$ in the weak-* topology if and only if $\rho\left(\varphi_{j}, \varphi\right) \rightarrow 0$. Conclude that the topology induced by ρ on B^{*} is the weak-* topology; that is, conclude that the weak-* topology on B^{*} is metrizable.
(f) Conclude that X^{*} is separable in the weak-* topology. (As Pedersen points out, a compact metric space is totally bounded and therefore separable.)
2. Work E 2.5.6, but use the hint from the "revised edition" of the text.
3. Suppose that H is an inner product space. Show that $|(x \mid y)|=\|x\|\|y\|$ if and only if either $x=\alpha y$ or $y=\alpha x$ for some $\alpha \in \mathbf{F}$.
4. Suppose that W is a nontrivial subspace of a Hilbert space H. Define $P: H \rightarrow W$ by $P(h)=w$, where w is the closest element in W to h. (Alternatively, $P(h)=w$ where $h=w+w^{\perp}$ with $w \in W$ and $w^{\perp} \in W^{\perp}$.)
(a) Show that P is a bounded linear map with $\|P\|=1$.
(b) If Y is a subspace of H and if $y \in Y$ is in the kernel of P, then $y \in W^{\perp}$.
(c) Work problem E 3.1.7 in the text.
5. Work problem E 3.1.9 in the text. (Remark: in problem 1 implies that H is separable in the weak topology. Here we also see that, despite this, it fails to be either second countable or even first countable in the weak topology.)
6. Work problem E 3.1.11 in the text.

