Homework Assignment \#2 Due Monday, February 5th

1. Suppose that Y is a subspace of a normed vector space X. Show that the closure of Y is given by

$$
\bar{Y}=\bigcap\left\{\operatorname{ker} \varphi: \varphi \in X^{*} \text { and } Y \subset \operatorname{ker} \varphi\right\} .
$$

2. Work E.2.3.2 in the text. If may be helpful to think of c_{0} as $C_{0}(\mathbf{N})$. Then if $x \in C_{c}(\mathbf{N})$, we have $x=\sum x_{n} \delta_{n}$, where the x_{n} are scalars and δ_{n} is the function taking the value 1 at n and 0 elsewhere.

ANS: This shouldn't be so hard. Recall that \mathfrak{c} and \mathfrak{c}_{0} are subspaces of ℓ^{∞}. It is easy to see that $\mathfrak{c}_{00}:=C_{c}(\mathbf{N})$ can be viewed as a dense subspace of either \mathfrak{c}_{0} or ℓ^{1}.

Furthermore, if $x \in \ell^{\infty}$ and $y \in \ell^{1}$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|x_{n} y_{n}\right| \leq\|x\|_{\infty} \sum_{n=1}^{\infty}\left|y_{n}\right|=\|x\|_{\infty}\|y\|_{1} . \tag{1}
\end{equation*}
$$

Therefore, if $y \in \ell^{1}$, then we can define $\varphi_{y}: \mathfrak{c}_{0} \rightarrow \mathbf{F}$ by

$$
\varphi_{y}(x)=\sum_{n=1}^{\infty} x_{n} y_{n},
$$

and $\left\|\varphi_{y}\right\| \leq\|y\|_{1}$. Of course, given $\epsilon>0$, there is a N such that

$$
\sum_{n=1}^{N}\left|y_{n}\right| \geq\|y\|_{1}-\epsilon
$$

For $z \in \mathbf{F}$, let $\operatorname{sgn}(z)$ equal $z /|z|$ if $z \neq 0$, and 0 otherwise. (Thus $\overline{\operatorname{sgn}(z)} z=|z|$ for all z.) Define $x \in \mathfrak{c}_{0}$ by

$$
x_{n}= \begin{cases}\overline{\operatorname{sgn}\left(y_{n}\right)} & \text { if } n \leq N, \text { and } \\ 0 & \text { otherwise }\end{cases}
$$

Then x has norm at most one, and

$$
\varphi_{y}(x)=\sum_{n=1}^{N}\left|y_{n}\right| \geq\|y\|_{1}-\epsilon .
$$

Therefore $\left\|\varphi_{y}\right\|=\|y\|_{1}$, and $y \mapsto \varphi_{y}$ is an isometry of ℓ^{1} into \mathfrak{c}_{0}^{*}. We just have to see that it is surjective.

Suppose that $\varphi \in \mathfrak{c}_{0}^{*}$. Define $y_{n}:=\varphi\left(\delta_{n}\right)$. For any N, define

$$
x_{n}^{N}= \begin{cases}\overline{\operatorname{sgn}\left(y_{n}\right)} & \text { if } n \leq N, \text { and } \\ 0 & \text { otherwise } .\end{cases}
$$

Then $x^{N}=\sum_{n=1}^{N} \overline{\operatorname{sgn}\left(y_{n}\right)} \delta_{n},\left\|x^{N}\right\|_{\infty} \leq 1$ and $x^{N} \in \mathfrak{c}_{00} \subset \mathfrak{c}_{0}$. Since

$$
\varphi\left(x^{N}\right)=\sum_{n=1}^{N}\left|y_{n}\right| \leq\|\varphi\|
$$

$y=\left(y_{n}\right)$ is in ℓ^{1}. Since $\varphi=\varphi_{y}$ on \mathfrak{c}_{00}, and since \mathfrak{c}_{00} is dense in \mathfrak{c}_{0}, we must have $\varphi=\varphi_{y}$ as desired. This proves that \mathfrak{c}_{0}^{*} is (isometrically isomorphic to) ℓ^{1}.

Now start with $x \in \ell^{\infty}$. Then (1) implies that we get a functional $\psi_{x}: \ell^{1} \rightarrow \mathbf{F}$ defined by

$$
\psi_{x}(y)=\sum_{n=1}^{\infty} x_{n} y_{n}
$$

and that $\left\|\psi_{x}\right\| \leq\|x\|_{\infty}$. If $x \in \ell^{\infty}$ and if $\epsilon>0$, then there is a k such that $\left|x_{k}\right| \geq\|x\|_{\infty}-\epsilon$. Since $\left\|\delta_{k}\right\|_{1}=1$ and since $\left|\psi_{x}\left(\delta_{k}\right)\right| \leq\|x\|_{\infty}-\epsilon$, we see that $x \mapsto \psi_{x}$ is an isometry of ℓ^{∞} into $\ell^{1^{*}}$. To see that this map is surjective, we proceed as above. ${ }^{1}$ Given $\psi \in \ell^{1^{*}}$, let $x_{n}:=\psi\left(\delta_{n}\right)$. Since $\left|x_{n}\right| \leq\|\psi\|$, $x=\left(x_{n}\right) \in \ell^{\infty}$. Since $\psi=\psi_{x}$ on \mathfrak{c}_{00} and since \mathfrak{c}_{00} is dense in ℓ^{1}, we've shown that $\psi=\psi_{x}$ and that $\ell^{1^{*}}$ is (isometrically isomorphic to) ℓ^{∞}.

Now let's look at \mathfrak{c}^{*}. Define $\lambda: \mathfrak{c} \rightarrow \mathbf{F}$ by $\lambda(x)=\lim _{n} x_{n}$. Then $\lambda \in \mathfrak{c}^{*}$ and $\|\lambda\|=1$. Now suppose that $\varphi \in \mathfrak{c}^{*}$. Then the restriction of φ to $\mathfrak{c}_{0} \subset \mathfrak{c}$ is, by the first part of this problem, given by φ_{y} for some $y \in \ell^{1}$. On the other hand, if $x \in \mathfrak{c}$, then $x-\lambda(x) \cdot 1 \in \mathfrak{c}_{0}$, where 1 denotes the constant sequence. If $L:=\varphi(1)$, then

$$
\varphi(x)=\varphi_{y}(x)+\lambda(x)\left(L-\sum y_{n}\right)
$$

Thus every $\varphi \in \mathfrak{c}^{*}$ is of the form

$$
\varphi(x)=\varphi_{y}(x)+z \lambda(x)
$$

for some $y \in \ell^{1}$ and $z \in \mathbf{F}$. Furthermore, a straightforward computation shows that $\|\varphi\|=\|y\|_{1}+|z|$. Thus we get an isometric isomorphism of $\mathbf{C} \oplus \ell^{1}$ onto \mathfrak{c}^{*} where the norm of the latter is given by $\|(z, y)\|:=|z|+\|y\|_{1}$. However it is easy to see that $\mathbf{C} \oplus \ell^{1}$ is isometrically isomorphic to ℓ^{1} : just send $\left(z,\left(y_{n}\right)\right)$ to $\left(z, y_{1}, y_{2}, \ldots\right)$.

Finally, \mathfrak{c}_{0}, and therefore \mathfrak{c}, can't be reflexive since \mathfrak{c}_{0} is separable and $\mathfrak{c}_{0}^{* *} \cong \ell^{1^{*}} \cong \ell^{\infty}$ is not.
3. Work E.2.3.4 in the text.

ANS: Let $\left\{\varphi_{n}\right\}$ be dense in X^{*}, and choose $x_{n} \in X$ such that $\left\|x_{n}\right\|=1$ and such that $\left|\varphi_{n}\left(x_{n}\right)\right| \geq$ $\frac{1}{2}\left\|\varphi_{n}\right\|$. Let Y be the closed linear span of the x_{n}. Then Y is separable (since the rational span of the x_{n} is dense in Y). If $X=Y$, then we're done. Otherwise, our Corollary 2.3.5 implies that there

[^0]is $\varphi \in X^{*}$ such that $\|\varphi\|=1$ and such that $\varphi(y)=0$ for all $y \in Y$. In particular, $\varphi\left(x_{n}\right)=0$ for all n. But there is a n such that $\left\|\varphi-\varphi_{n}\right\|<\frac{1}{8}$. In particular, $\left\|\varphi_{n}\right\| \geq \frac{1}{2}$. But then
\[

$$
\begin{aligned}
\left|\varphi\left(x_{n}\right)\right| & =\mid \varphi_{n}\left(x_{n}\right)-\left(\varphi_{n}\left(x_{n}\right)-\varphi\left(x_{n}\right) \mid\right. \\
& \geq\left|\varphi_{n}\left(x_{n}\right)\right|-\left|\left(\varphi-\varphi_{n}\right)\left(x_{n}\right)\right| \\
& \geq \frac{1}{4}-\frac{1}{8}>0 .
\end{aligned}
$$
\]

This contradicts the fact that $\mid \varphi\left(x_{n}\right)=0$. Therefore $Y=X$ and we're done.

4. Work E.2.3.5 in the text.

ANS: First some comments. For any Banach space $X, \iota: X \rightarrow X^{* *}$ is an isometric injection. We say that X is reflexive if ι is surjective. Technically, that is not the same as showing that X and $X^{* *}$ are isomorphic. Thus saying that since X reflexive implies that X and $X^{* *}$ are isomorphic, we have X^{*} and $X^{* * *}$ isomorphic is not quite enough to show that X^{*} is reflexive.

Anyway, to the problem: Assume first that X is reflexive. To show that X^{*} is reflexive, we need to show that $\iota^{*}: X^{*} \rightarrow X^{* * *}$ is surjective. ${ }^{2}$ To this end, suppose that $\Phi \in X^{* * *}$. Since the composition of bounded maps is bounded, we can define $\varphi \in X^{*}$ by

$$
\varphi(x):=\Phi(\iota(x)) .
$$

Thus we'll be done once we prove that $\iota^{*}(\varphi)=\Phi$. However, since $\iota(x)$ is a typical element of $X^{* *}$, we can compute that

$$
\begin{aligned}
\iota^{*}(\varphi)(\iota(x)) & =\iota(x)(\varphi) \\
& =\varphi(x) \\
& =\Phi(\iota(x)) .
\end{aligned}
$$

This proves that $\iota^{*}(\varphi)=\Phi$, and finishes the first half of the problem.
Now suppose that X^{*} is reflexive so that, in the notation above, $\iota^{*}: X^{*} \rightarrow X^{* * *}$ is surjective. If X were not reflexive, then since $i(X)$ is an isometric image of X, it is complete and therefore it is a closed proper subspace of $X^{* *}$. Therefore, by Corollary 2.3.5, there is a $\Phi \in X^{* * *}$ such that $\|\Phi\|=1$ and such that $\Phi(\iota(X))=\{0\}$. By assumption, we have $\Phi=\iota^{*}(\varphi)$ for some $\varphi \in X^{*}$. But then for all $x \in X$ we have

$$
\begin{aligned}
0 & =\Phi(1(x)) \\
& =\iota^{*}(\varphi)(\iota(x)) \\
& =\iota(x)(\varphi) \\
& =\varphi(x) .
\end{aligned}
$$

But this is absurd, since this implies $\varphi=0$ in which case $\Phi=\iota^{*}(\varphi)$ is zero. Thus we must have $\iota(X)$ equal to all of $X^{* *}$ and X is reflexive.

[^1]5. Work E.2.3.7 in the text.

ANS: One of the challenges here is to write your thoughts down coherently and to properly justify the manipulations with sums.

If $x \in \ell^{1}$, then for all $\epsilon>0$, there is a N such that $n \geq N$ implies

$$
\left|\sum_{m=n}^{\infty} x_{m}\right| \leq \sum_{m=n}^{\infty}\left|x_{m}\right|<\epsilon
$$

Therefore

$$
(T x)_{n}:=\sum_{m=n}^{\infty} x_{m}
$$

defines an element $T x$ in \mathfrak{c}_{0}. Clearly, $T: \ell^{1} \rightarrow \mathfrak{c}_{0}$ is linear. Since

$$
\left|(T x)_{n}\right| \leq \sum_{m=n}^{\infty}\left|x_{m}\right| \leq\|x\|_{1}
$$

we certainly have $\|T x\|_{\infty} \leq\|x\|_{1}$ and $T \in B\left(\ell^{1}, \mathfrak{c}_{0}\right)$.
Now we identify ℓ^{1} with \mathfrak{c}_{0}^{*} and ℓ^{∞} with $\ell^{1^{*}}$ via the maps $y \mapsto \varphi_{y}$ and $x \mapsto \psi_{x}$ defined in a previous problem. Now if $x, y \in \ell^{1}$, we have - using Fubini's Theorem to justify the manipulations with sums -

$$
\begin{aligned}
\left(T^{*} \varphi_{x}\right)(y) & =\varphi_{x}(T y) \\
& =\sum_{n=1}^{\infty} x_{n}(T y)_{n} \\
& =\sum_{n=1}^{\infty} \sum_{m=n}^{\infty} x_{n} y_{m} \\
& =\sum_{\{(n, m) \in \mathbf{N} \times \mathbf{N}: m \geq n\}} x_{n} y_{m} \\
& =\sum_{m=1}^{\infty} \sum_{n=1}^{m} x_{n} y_{m} \\
& =\sum_{m=1}^{\infty} y_{m}\left(\sum_{n=1}^{m} x_{n}\right) \\
& =\psi_{z}(y)
\end{aligned}
$$

where $z \in \ell^{\infty}$ is given by $z_{m}:=\sum_{n=1}^{m} x_{n}$. Therefore as a map from $\ell^{1} \rightarrow \ell^{\infty}$, we have $T^{*} x=z$.

[^0]: ${ }^{1}$ Since counting measure on \mathbf{N} is σ-finite, we could have appealed to the fact that $L^{1}(X, \mathcal{M}, \mu)^{*}$ is $L^{\infty}(X, \mathcal{M}, \mu)$ whenever the measure space is σ-finite, but that would be overkill.

[^1]: ${ }^{2}$ The notation ι^{*} is terrible: I don't mean the adjoint of ι. Still, it seemed too natural a choice to pass up.

