
Math 113
Homework Assignment Number One

Due Monday, January 22nd

1. Work E.1.2.6 in the text. You should accept as given that, as in E.1.1.8, there is an
uncountable well ordered set (X,≤) such that for all y ∈ X, the set { x ∈ X : x < y } is
countable.1

ANS: Let (X,≤) be an uncountable well-ordered set with the property that for each y ∈ X , the
set { x ∈ X : x ≤ y } is countable. Give X the order topology.

First, I claim that X is not second countable. Suppose it were and that ρ = {An }∞n=1 were a
basis for the topology. Thus if V is open in X , we have

V =
⋃

{An ∈ ρ : An ⊆ V }.

Now for each y ∈ X , let Vy = { x ∈ X : x < y }. Note that each Vy is open and countable. Also
notice that if x ∈ X then there is a y ∈ X such that x < y; this is because { z : z ≤ x } is countable
and X is not. Therefore

X =
⋃

y∈X

Vy. (1)

But the set S = {n ∈ N : An ⊂ Vy for some y ∈ X } is certainly countable, and (1) implies that

X =
⋃

n∈S

An. (2)

This leads to a contradiction since each An is countable (its a subset of a countable set), so (2)
implies that X is countable. This proves the claim.

Next I claim that X is first countable. Fix x ∈ X . Since X is well-ordered, { y ∈ X : x < y }
has a least element which I denote x+. I’ll use the notation (y, z) to denote {w ∈ X : y < w < z }.
Since { y : y < x } is countable, so is the collection ρx = { (y, x+) : y < x }. The latter is clearly
a neighborhood base at x. (OK, there’s one exception: if 1 denotes the least element of X , then
{ y : y < 1 } is empty and, therefore, so is ρ1. But in that case { { 1 } } is a neighborhood base at
1. Notice that if x has a predecessor, i.e., an element x− such that (x−)+ = x, then { { x } } is a
neighborhoodbase at x. But not every point will have a predecessor.)

2. Work E.1.2.9 in the text.

ANS: Let (X, d) be a metric space. Fix x ∈ X . Let Bǫ(x) = { y ∈ X : d(x, y) < ǫ }. I claim
N = {B 1

n

(x) }∞n=1 is a neighborhood base at x. Let V be a neighborhood of x. Then there is an

ǫ > 0 such that x ∈ Bǫ(x) ⊆ V . Choose n such that 1

n
< ǫ. Now x ∈ B 1

n

(x) ⊆ Bǫ(x) ⊆ V . This
proves the claim.

1It is not part of this problem, but in the order topology on X , closed intervals, [x, y] := { z : x ≤ z ≤ y },
are compact and X is locally compact.
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Next suppose that (X, d) is second countable; let {An }∞n=1 be a basis for the topology. For
each n ≥ 1, choose any xn ∈ An. I claim that D = { xn }∞n=1 is dense in X , and hence, that X
is separable. But if V is a nonempty open subset of X , say x ∈ V , then there is a n such that
x ∈ An ⊂ V . Thus, D ∩ V 6= ∅. The claim follows.

Now suppose that (X, d) is separable; suppose that D = { xn }∞n=1 is dense. Let ρ = {B 1
m

(xn) :

n, m ≥ 1 }. I will show that ρ is a basis and then it follows by definition that X must be second
countable. Let V be open in X and suppose that x ∈ V . Then there exists ǫ > 0 such that
Bǫ(x) ⊆ V . Choose m so that 1

m
< ǫ

2
. Since D is dense, there is a xn such that d(xn, x) < 1

m
. Then

if y ∈ B 1
m

(xn), we have d(y, x) ≤ d(y, xn) + d(xn, x) < 1

m
+ 1

m
< ǫ. Thus,

x ∈ B 1
m

(xn) ⊆ Bǫ(x) ⊆ V.

This establishes the claim.

3. Work E.2.1.1 in the text.

ANS: The interesting part of this problem is to show that “absolute convergence implies conver-
gence” implies completeness.

Suppose that { xn }∞n=1 is a Cauchy sequence. We accept that it suffices to show that { xn }∞n=1

has a convergent subsequence. Using the definition of Cauchy sequence, an induction argument
shows that there is a subsequence { xnk

}∞k=1 such that

‖xnk+1
− xnk

‖ <
1

2k
.

Let y1 := xn1
, and if k ≥ 2, let yk := xnk+1

− xnk
. Then

∑

yk is absolutely convergent. By
assumption, there is a x ∈ X such that

x = lim
k

k
∑

i=1

yi = lim
k

xnk
.

That’s what we wanted.

4. Work E.2.1.4 in the text.

5. Let X be a normed vector space and let B = { x ∈ X : ‖x‖ ≤ 1 } be the unit ball. Show
that if B is compact, then X is finite dimensional.2 Since this is E.2.1.3 in the text, I was
embarrassed not to be able to give a “qucik” proof. You can either follow my steps below,
or provide a better proof yourself.

2It is easy to go from here to showing that any normed vector space that is locally compact is necessarily
finite dimensional.
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(a) Let V = { x ∈ X : ‖x‖ < 1 } be the open unit ball. Show that there is a finite set
{ x1, . . . , xn } ⊂ X such that

B ⊂
n

⋃

i=1

xi +
1

2
V.

(b) Let Y = span{ x1, . . . , xn } and conclude that

V ⊂ Y +
1

2
V

(c) Let q : X → X/Y be the quotient map. Show that W := q(V ) is open.

(d) Show that 2W ⊂ W .

(e) Deduce that X/Y = { 0 } so that X = Y is finite dimensional as claimed.

ANS: Actually, Chor’s solution was a bit cleaner than mine. (Well, his idea was cleaner, his
execution left a bit to the imagination.)

Once you have V ⊂ Y + 1

2
V , we have V ⊂ Y + 1

2
(Y + 1

2
V ) = Y + 1

4
V . Iterating,

V ⊂ Z :=
⋂

n

(Y +
1

2n
V ).

Clearly, Y ⊂ Z. But it z ∈ Z, then there are yn ∈ Y such that ‖z − yn‖ < 1

2n . But then yn → z,
and since Y is closed, z ∈ Y . Thus Z = Y , and we have

V ⊂ Y.

This implies that Y = X . Therefore X is finite dimensional (since Y is).

6. Define two norms ‖ · ‖1 and ‖ · ‖2 on a vector space V to be equivalent in they determine
the same topology on V . Prove that ‖ · ‖1 and ‖ · ‖2 are equivalent if and only if there are
nonzero positive constants c and d such that

c‖v‖1 ≤ ‖v‖2 ≤ d‖v‖1 for all v ∈ V .

ANS: This is similar to a result proved in lecture. Let T be the identity map from (V, ‖ · ‖1) →
(V, ‖ · ‖2). If the norms are equivalent, then T is continuous and therefore bounded. Hence there is
a d ≥ 0 such that ‖x‖2 = ‖Tx‖2 ≤ d‖x‖1 for all x. Since ‖ · ‖2 is a norm, d > 0. Since T−1 is also
continuous, there is a c > 0 such that ‖x‖1 ≤ 1

c
‖x‖2 for all x. This is what we wanted to prove.

If the norm inequalities hold, then T and T−1 are bounded maps — therefore they are contin-
uous with respect to the topologies induced by the norms. In other words, the identity map is a
homeomorphism. Therefore the topologies coincide.
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7. Work E.2.1.11 in the text. CORRECTION: Assume X and Y are Banach spaces.

ANS: We need X and Y to be Banach spaces.
Let X0 = span{ xj : j ∈ J }. Suppose that there is a α ∈ R such that for every finite set λ ⊂ J ,

we have
∥

∥

∥

∑

j∈λ

αjyj

∥

∥

∥
≤ α

∥

∥

∥

∑

j∈λ

αjxj

∥

∥

∥
. (3)

Since
∑

j∈λ αjxj is a typical element of X0, we want to define T0 : X0 → Y by

T0

(

∑

j∈λ

αjxj

)

=
∑

j∈λ

αjyj. (4)

But to do this properly, that is, to see that T0 is “well-defined”, we need to see that if
∑

j∈λ

αjxj =
∑

i∈λ′

βixi,

then
∑

j∈λ

αjyj =
∑

i∈λ′

βiyi.

To see this, it suffices to see that
∑

j∈λ αjxj = 0, then
∑

j∈λ αjyj = 0. But this follows easily from
(3). Therefore we get a well-defined operator T0 : X0 → Y , and (3) implies that T0 is bounded by
α. Then Proposition 2.1.11 implies that there is a T : X → Y extending T0. Clearly T (xj) = yj .
The other direction is straightforward.

8. (After Monday’s lecture): Suppose that X is a locally compact Hausdorff space. Show
that C0(X) is closed in Cb(X) and that Cc(X) is dense in C0(X).

ANS: Suppose that fn → f with each fn ∈ C0(X). We want to see that f ∈ C0(X). Fix ǫ > 0. It
suffices to see that

{ x : |f(x)| ≥ ǫ }

is compact. Since it is clearly closed, it is enough to see that it is contained in a compact set. But
we can choose n such that ‖f − fn‖∞ < ǫ/2. Then

{ x : |f(x)| ≥ ǫ } ⊂ { x : |fn(x)| ≥ ǫ/2 }.

Since the latter is compact, this suffices to show that C0(X) is closed in Cb(X).
To see that Cc(X) is dense in C0(X), let f ∈ C0(X). Fix ǫ > 0. Then by assumption,

K := { x : |f(x)| ≥ ǫ }

is compact. By the version of Urysohn’s lemma we proved in lecture, there is a continuous function
φ : X → [0, 1] with compact support such that φ(x) = 1 for all x ∈ K. Since φ ∈ Cc(X), so is the
pointwise product φf . But

‖f − φf‖∞ ≤ ǫ

(since |f(x) − φ(x)f(x)| = (1 − φ(x))|f(x)| ≤ |f(x)|). This suffices.

Remark. I thought E.2.1.6, E.2.1.8, E.2.1.9 and E.2.1.10 all illustrated some interesting

examples of Banach spaces, but I couldn’t bear the thought of more to grade.
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