Math 113
 Homework Assignment Number One
 Due Monday, January $22^{\text {nd }}$

1. Work E.1.2.6 in the text. You should accept as given that, as in E.1.1.8, there is an uncountable well ordered set (X, \leq) such that for all $y \in X$, the set $\{x \in X: x<y\}$ is countable. ${ }^{1}$

ANS: Let (X, \leq) be an uncountable well-ordered set with the property that for each $y \in X$, the set $\{x \in X: x \leq y\}$ is countable. Give X the order topology.

First, I claim that X is not second countable. Suppose it were and that $\rho=\left\{A_{n}\right\}_{n=1}^{\infty}$ were a basis for the topology. Thus if V is open in X, we have

$$
V=\bigcup\left\{A_{n} \in \rho: A_{n} \subseteq V\right\} .
$$

Now for each $y \in X$, let $V_{y}=\{x \in X: x<y\}$. Note that each V_{y} is open and countable. Also notice that if $x \in X$ then there is a $y \in X$ such that $x<y$; this is because $\{z: z \leq x\}$ is countable and X is not. Therefore

$$
\begin{equation*}
X=\bigcup_{y \in X} V_{y} . \tag{1}
\end{equation*}
$$

But the set $S=\left\{n \in \mathbf{N}: A_{n} \subset V_{y}\right.$ for some $\left.y \in X\right\}$ is certainly countable, and (1) implies that

$$
\begin{equation*}
X=\bigcup_{n \in S} A_{n} . \tag{2}
\end{equation*}
$$

This leads to a contradiction since each A_{n} is countable (its a subset of a countable set), so (2) implies that X is countable. This proves the claim.

Next I claim that X is first countable. Fix $x \in X$. Since X is well-ordered, $\{y \in X: x<y\}$ has a least element which I denote x_{+}. I'll use the notation (y, z) to denote $\{w \in X: y<w<z\}$. Since $\{y: y<x\}$ is countable, so is the collection $\rho_{x}=\left\{\left(y, x_{+}\right): y<x\right\}$. The latter is clearly a neighborhood base at x. (OK, there's one exception: if 1 denotes the least element of X, then $\{y: y<1\}$ is empty and, therefore, so is ρ_{1}. But in that case $\{\{1\}\}$ is a neighborhood base at 1. Notice that if x has a predecessor, i.e., an element x_{-}such that $\left(x_{-}\right)_{+}=x$, then $\{\{x\}\}$ is a neighborhoodbase at x. But not every point will have a predecessor.)
2. Work E.1.2.9 in the text.

ANS: Let (X, d) be a metric space. Fix $x \in X$. Let $B_{\epsilon}(x)=\{y \in X: d(x, y)<\epsilon\}$. I claim $\mathcal{N}=\left\{B_{\frac{1}{n}}(x)\right\}_{n=1}^{\infty}$ is a neighborhood base at x. Let V be a neighborhood of x. Then there is an $\epsilon>0$ such that $x \in B_{\epsilon}(x) \subseteq V$. Choose n such that $\frac{1}{n}<\epsilon$. Now $x \in B_{\frac{1}{n}}(x) \subseteq B_{\epsilon}(x) \subseteq V$. This proves the claim.

[^0]Next suppose that (X, d) is second countable; let $\left\{A_{n}\right\}_{n=1}^{\infty}$ be a basis for the topology. For each $n \geq 1$, choose any $x_{n} \in A_{n}$. I claim that $D=\left\{x_{n}\right\}_{n=1}^{\infty}$ is dense in X, and hence, that X is separable. But if V is a nonempty open subset of X, say $x \in V$, then there is a n such that $x \in A_{n} \subset V$. Thus, $D \cap V \neq \emptyset$. The claim follows.

Now suppose that (X, d) is separable; suppose that $D=\left\{x_{n}\right\}_{n=1}^{\infty}$ is dense. Let $\rho=\left\{B_{\frac{1}{m}}\left(x_{n}\right)\right.$: $n, m \geq 1\}$. I will show that ρ is a basis and then it follows by definition that X must be second countable. Let V be open in X and suppose that $x \in V$. Then there exists $\epsilon>0$ such that $B_{\epsilon}(x) \subseteq V$. Choose m so that $\frac{1}{m}<\frac{\epsilon}{2}$. Since D is dense, there is a x_{n} such that $d\left(x_{n}, x\right)<\frac{1}{m}$. Then if $y \in B_{\frac{1}{m}}\left(x_{n}\right)$, we have $d(y, x) \leq d\left(y, x_{n}\right)+d\left(x_{n}, x\right)<\frac{1}{m}+\frac{1}{m}<\epsilon$. Thus,

$$
x \in B_{\frac{1}{m}}\left(x_{n}\right) \subseteq B_{\epsilon}(x) \subseteq V
$$

This establishes the claim.
3. Work E.2.1.1 in the text.

ANS: The interesting part of this problem is to show that "absolute convergence implies convergence" implies completeness.

Suppose that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence. We accept that it suffices to show that $\left\{x_{n}\right\}_{n=1}^{\infty}$ has a convergent subsequence. Using the definition of Cauchy sequence, an induction argument shows that there is a subsequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ such that

$$
\left\|x_{n_{k+1}}-x_{n_{k}}\right\|<\frac{1}{2^{k}}
$$

Let $y_{1}:=x_{n_{1}}$, and if $k \geq 2$, let $y_{k}:=x_{n_{k+1}}-x_{n_{k}}$. Then $\sum y_{k}$ is absolutely convergent. By assumption, there is a $x \in X$ such that

$$
x=\lim _{k} \sum_{i=1}^{k} y_{i}=\lim _{k} x_{n_{k}}
$$

That's what we wanted.
4. Work E.2.1.4 in the text.
5. Let X be a normed vector space and let $B=\{x \in X:\|x\| \leq 1\}$ be the unit ball. Show that if B is compact, then X is finite dimensional. ${ }^{2}$ Since this is E.2.1.3 in the text, I was embarrassed not to be able to give a "qucik" proof. You can either follow my steps below, or provide a better proof yourself.

[^1](a) Let $V=\{x \in X:\|x\|<1\}$ be the open unit ball. Show that there is a finite set $\left\{x_{1}, \ldots, x_{n}\right\} \subset X$ such that
$$
B \subset \bigcup_{i=1}^{n} x_{i}+\frac{1}{2} V
$$
(b) Let $Y=\operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}$ and conclude that
$$
V \subset Y+\frac{1}{2} V
$$
(c) Let $q: X \rightarrow X / Y$ be the quotient map. Show that $W:=q(V)$ is open.
(d) Show that $2 W \subset W$.
(e) Deduce that $X / Y=\{0\}$ so that $X=Y$ is finite dimensional as claimed.

ANS: Actually, Chor's solution was a bit cleaner than mine. (Well, his idea was cleaner, his execution left a bit to the imagination.)

Once you have $V \subset Y+\frac{1}{2} V$, we have $V \subset Y+\frac{1}{2}\left(Y+\frac{1}{2} V\right)=Y+\frac{1}{4} V$. Iterating,

$$
V \subset Z:=\bigcap_{n}\left(Y+\frac{1}{2^{n}} V\right) .
$$

Clearly, $Y \subset Z$. But it $z \in Z$, then there are $y_{n} \in Y$ such that $\left\|z-y_{n}\right\|<\frac{1}{2^{n}}$. But then $y_{n} \rightarrow z$, and since Y is closed, $z \in Y$. Thus $Z=Y$, and we have

$$
V \subset Y .
$$

This implies that $Y=X$. Therefore X is finite dimensional (since Y is).
6. Define two norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ on a vector space V to be equivalent in they determine the same topology on V. Prove that $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ are equivalent if and only if there are nonzero positive constants c and d such that

$$
c\|v\|_{1} \leq\|v\|_{2} \leq d\|v\|_{1} \quad \text { for all } v \in V
$$

ANS: This is similar to a result proved in lecture. Let T be the identity map from $\left(V,\|\cdot\|_{1}\right) \rightarrow$ $\left(V,\|\cdot\|_{2}\right)$. If the norms are equivalent, then T is continuous and therefore bounded. Hence there is a $d \geq 0$ such that $\|x\|_{2}=\|T x\|_{2} \leq d\|x\|_{1}$ for all x. Since $\|\cdot\|_{2}$ is a norm, $d>0$. Since T^{-1} is also continuous, there is a $c>0$ such that $\|x\|_{1} \leq \frac{1}{c}\|x\|_{2}$ for all x. This is what we wanted to prove.

If the norm inequalities hold, then T and T^{-1} are bounded maps - therefore they are continuous with respect to the topologies induced by the norms. In other words, the identity map is a homeomorphism. Therefore the topologies coincide.
7. Work E.2.1.11 in the text. CORRECTION: Assume \mathfrak{X} and \mathfrak{Y} are Banach spaces.

ANS: We need X and Y to be Banach spaces.
Let $X_{0}=\operatorname{span}\left\{x_{j}: j \in J\right\}$. Suppose that there is a $\alpha \in \mathbf{R}$ such that for every finite set $\lambda \subset J$, we have

$$
\begin{equation*}
\left\|\sum_{j \in \lambda} \alpha_{j} y_{j}\right\| \leq \alpha\left\|\sum_{j \in \lambda} \alpha_{j} x_{j}\right\| \tag{3}
\end{equation*}
$$

Since $\sum_{j \in \lambda} \alpha_{j} x_{j}$ is a typical element of X_{0}, we want to define $T_{0}: X_{0} \rightarrow Y$ by

$$
\begin{equation*}
T_{0}\left(\sum_{j \in \lambda} \alpha_{j} x_{j}\right)=\sum_{j \in \lambda} \alpha_{j} y_{j} \tag{4}
\end{equation*}
$$

But to do this properly, that is, to see that T_{0} is "well-defined", we need to see that if

$$
\sum_{j \in \lambda} \alpha_{j} x_{j}=\sum_{i \in \lambda^{\prime}} \beta_{i} x_{i}
$$

then

$$
\sum_{j \in \lambda} \alpha_{j} y_{j}=\sum_{i \in \lambda^{\prime}} \beta_{i} y_{i}
$$

To see this, it suffices to see that $\sum_{j \in \lambda} \alpha_{j} x_{j}=0$, then $\sum_{j \in \lambda} \alpha_{j} y_{j}=0$. But this follows easily from (3). Therefore we get a well-defined operator $T_{0}: X_{0} \rightarrow Y$, and (3) implies that T_{0} is bounded by α. Then Proposition 2.1.11 implies that there is a $T: X \rightarrow Y$ extending T_{0}. Clearly $T\left(x_{j}\right)=y_{j}$. The other direction is straightforward.
8. (After Monday's lecture): Suppose that X is a locally compact Hausdorff space. Show that $C_{0}(X)$ is closed in $C^{b}(X)$ and that $C_{c}(X)$ is dense in $C_{0}(X)$.

ANS: Suppose that $f_{n} \rightarrow f$ with each $f_{n} \in C_{0}(X)$. We want to see that $f \in C_{0}(X)$. Fix $\epsilon>0$. It suffices to see that

$$
\{x:|f(x)| \geq \epsilon\}
$$

is compact. Since it is clearly closed, it is enough to see that it is contained in a compact set. But we can choose n such that $\left\|f-f_{n}\right\|_{\infty}<\epsilon / 2$. Then

$$
\{x:|f(x)| \geq \epsilon\} \subset\left\{x:\left|f_{n}(x)\right| \geq \epsilon / 2\right\}
$$

Since the latter is compact, this suffices to show that $C_{0}(X)$ is closed in $C^{b}(X)$.
To see that $C_{c}(X)$ is dense in $C_{0}(X)$, let $f \in C_{0}(X)$. Fix $\epsilon>0$. Then by assumption,

$$
K:=\{x:|f(x)| \geq \epsilon\}
$$

is compact. By the version of Urysohn's lemma we proved in lecture, there is a continuous function $\phi: X \rightarrow[0,1]$ with compact support such that $\phi(x)=1$ for all $x \in K$. Since $\phi \in C_{c}(X)$, so is the pointwise product ϕf. But

$$
\|f-\phi f\|_{\infty} \leq \epsilon
$$

(since $|f(x)-\phi(x) f(x)|=(1-\phi(x))|f(x)| \leq|f(x)|)$. This suffices.
Remark. I thought E.2.1.6, E.2.1.8, E.2.1.9 and E.2.1.10 all illustrated some interesting examples of Banach spaces, but I couldn't bear the thought of more to grade.

[^0]: ${ }^{1}$ It is not part of this problem, but in the order topology on X, closed intervals, $[x, y]:=\{z: x \leq z \leq y\}$, are compact and X is locally compact.

[^1]: ${ }^{2}$ It is easy to go from here to showing that any normed vector space that is locally compact is necessarily finite dimensional.

