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Extra Material

The product toplogy is one of the more ubiquitous objects in elementary topology. Let
(Xa, τa) be a topological space for all a ∈ A. Recall that the Cartesian product

∏
a∈AXa

is the set of all functions x : A →
⋃
a∈AXa such that x(a) ∈ Xa. If a0 ∈ A, then the

projection pa0 onto the a0-factor is the map pa0 :
∏

a∈AXa → Xa0 given by pa0(x) = x(a0).
The product topology on

∏
a∈AXa is the initial topology induced by the projections maps.

Thus the product topology is the smallest topology on the product such that each projection
is continuous. A subbasis is given by the sets U(a, V ) = p−1a (V ) for any a ∈ A with V open
in Xa.

1. Let (xλ) be a net in Z =
∏

a∈AXa. Then xλ → x in the product topology if and only if
xλ(a) → x(a) for all a ∈ A. (So the product topology can be thought of as the topology of
pointwise convergence.)

ANS: Suppose that xλ → x in Z and a ∈ A. Let V be a neighborhood of x(a). Since (xλ) is
eventually in U(a, V ) = p−1a (V ), (xλ(a)) is eventually in V . This proves xλ(a)→ x(a) as required.

Now suppose that xλ(a)→ x(a) for all a. A basic open neigborhood of x is of the form

U = U(a1, V1) ∩ · · · ∩ U(an, Vn).

But there is an λ0 such that λ ≥ λ0 implies xλ(ak) ∈ Vk for k = 1, . . . , n. But then λ ≥ λ0 implies
xλ ∈ U . This suffices.

The Tychonoff Theorem asserts that the (arbitrary) product of compact spaces is
compact in the product topology. We’ll use this to prove the Alaoglu Theorem in due
course. Right now, I want to point out that #229 does not hold in general topological spaces.

2. For each α ∈ `∞, let Dα be a closed disk in C such that αn ∈ Dα for all n ≥ 1. Then
Z =

∏
α∈`∞ Dα is compact in the product topology. Let (zn) ⊂ Z be the sequence given by

zn(α) = αn. Then (zn) has accumulation points (just because Z is compact and applying
#228), but no converent subsequences.

ANS: Let (xn) be as above. Suppose to the contrary, (xn) has a subsequence (xnk
) converging to

x. Then xnk
(α)→ x(α) for all α ∈ `∞. Define α0 ∈ `∞ as follows:

α0(n) =

{
(−1)k if n = nk and

0 otherwise.

But then we get a contradiction since xnk
(α0) = (−1)k which does not converge to anything.
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The proof the Tychonoff Theorem is one of those things that is often omitted in standard
courses. The excuse is time (as in this course) and often the proof is unsatisfactory in that
it uses machinery beyond the scope of the current course. Fortunately, Zach Garvey pointed
me to a tidy proof in Loomis’s “Abstract Harmonic Analysis” [2]. Here it is in it’s entirety.

Theorem (Tychonoff). Suppose that Xα is compact for all α ∈ A. Then X =
∏

α∈AXα is
compact in the product topology.

Proof. Let F be a family of closed sets in X with the FIP (finite intersection property). We
need to prove that ⋂

F∈F

F 6= ∅

By Zorn’s Lemma, there is a maximal family of (not necessarily closed) subsets F0 such
that F ⊂ F0 and such that F0 has the FIP. Notice that the maximality condition on F0

implies that F0 is closed under intersection.
For each α ∈ A, let Fα0 be the collection of subsets of Xα which are images of elements

of F0 under the projection map pα : X → Xα. Note that Fα0 has the FIP for each α. Since
Xα is compact, there is a point xα ∈ Xα that belongs to the closure of each element in Fα0 .

Let x ∈ X be given by x(α) = xα. It will suffice to see that x ∈ F for all F ∈ F0; that
implies x ∈ F for all F ∈ F .

Let U be a neighborhood of x in X. Then

x ∈
n⋂
i=1

p−1αi
(Uαi

) ⊂ U

for α1, . . . , αn ∈ A and open sets Uαi
⊂ Xαi

. Thus xαi
∈ Uαi

and Uαi
meets every set in Fαi

0 .
Hence p−1αi

(Uαi
) meets every set in F0. By maximality and the fact that F0 is closed under

intersection, p−1αi
(Uαi

) ∈ F0. But then
⋂n
i=1 p

−1
αi

(Uαi
) ∈ F0. Similarly, U ∈ F0.

This means that U meets each F ∈ F0. Since U is an arbitrary neighborhood of x, x ∈ F
for all F ∈ F0. This completes the proof.

The Jordan-von Neumann Theorem

This proof was taken from [1, Chap. XII §7, Exercises 19–24]. It is not really necessary to
assume that X is complete and a similar proof works over R.
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Proposition 1 (Jordan-von Neumann Theorem). Suppose that X is a complex1 Banach
space whose norm satisfies the parallelogram law:

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

Then X is a Hilbert space. More precisely, the form

(x | y) :=
1

4

3∑
k=0

ik‖x+ iky‖2 (1)

is an inner product on X such that (x | x) = ‖x‖2.

We proceed with a sequence of lemmas.

Lemma 1. For each x ∈ X, (x | x) = ‖x‖2.

Proof. Using the homogeneity of ‖ · ‖:

4(x | x) = ‖2x‖2 + i‖(1 + i)x‖2 − 0− i‖(1− i)x‖2 = 4‖x‖2.

Corollary 1. For all x ∈ X, (x | x) ≥ 0 and (x | x) = 0 only if x = 0.

Lemma 2. For all x, y ∈ X, we have (y | x) = (x | y).

Proof. Again, using the homogeneity of ‖ · ‖:

4(x | y) = ‖x+ y‖2 + i‖x+ iy‖2 − ‖x− y‖2 − i‖x− iy‖2

= ‖x+ y‖2 + i‖y − ix‖2 − ‖y − x‖2 − i‖y + ix‖2

= 4(y | x)

The next lemma is the key step. Of course, it was suggested by the exercise in Knapp’s
book. Nevertheless, it still found it tricky to work out. I am confident that there is a better
way.

Lemma 3. For all x, y, z ∈ X, we have

‖x+ y + z‖2 = ‖x+ y‖2 + ‖x+ z‖2 + ‖y + z‖2 − ‖x‖2 − ‖y‖2 − ‖z‖2.

1This proof can be easily modified for a real Banach space: simply replace (1) with

(x | y) :=
1

4

(
‖x+ y‖2 − ‖x− y‖2

)
.
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Proof. We make repeated use of the parallelogram law (to the indicated term):

‖x+ y + z‖2 = 2‖x+ y‖2 + 2‖z‖2 − ‖x+ y − z‖2

= ‖x+ y‖2 + ‖z‖2 + ‖x+ y‖2 + ‖z‖2︸ ︷︷ ︸−‖x+ y − z‖2

= ‖x+ y‖2 + ‖z‖2 +
1

2
‖x+ y + z‖2︸ ︷︷ ︸−1

2
‖x+ y − z‖2

= ‖x+ y‖2 + ‖z‖2 +
1

2

(
2‖x+ z‖2 + 2‖y‖2 − ‖x− y + z‖2

)
− 1

2
‖x+ y − z‖2

= ‖x+ y‖2 + ‖x+ z‖2 + ‖y‖2 + ‖z‖2 − 1

2

(
‖x− y + z‖2 + ‖x+ y − z‖2︸ ︷︷ ︸)

= ‖x+ y‖2 + ‖x+ z‖2 + ‖y‖2 + ‖z‖2︸ ︷︷ ︸−‖x‖2 − ‖z − y‖2
= ‖x+ y‖2 + ‖x+ z‖2 +

1

2
‖y + z‖2 +

1

2
‖z − y‖2 − ‖x‖2 − ‖z − y‖2

= ‖x+ y‖2 + ‖x+ z‖2 +
1

2
‖y + z‖2 − ‖x‖2 − 1

2
‖z − y‖2︸ ︷︷ ︸

= ‖x+ y‖2 + ‖x+ z‖2 +
1

2
‖y + z‖2 − ‖x‖2 − 1

2

(
2‖y‖2 + 2‖z‖2 − ‖y + z‖2

)
= ‖x+ y‖2 + ‖x+ z‖2 + ‖y + z‖2 − ‖x‖2 − ‖y‖2 − ‖z‖2.

Having successfully dealt with that messy computation, the fact that the potential inner
product preserves sums is easy.

Lemma 4. For all x, y, z ∈ X, we have (x+ y | x) = (x | z) + (y | z).

Proof. The essential observation is that
∑3

k=0 i
k = 1 + i− 1− i = 0. Then using Lemma 3,

we have

4(x+ y | x) =
3∑

k=0

ik‖x+ y + ikz‖2

=
3∑

k=0

ik
(
‖x+ y‖2 + ‖x+ ikz‖2 + ‖y + ikz‖2 − ‖x‖2 − ‖y‖2 − ‖z‖2

)
= 0 +

3∑
k=0

‖x+ ikz‖2 +
3∑

k=0

‖y + ikz‖2 + 0 + 0 + 0

= 4(x | z) + 4(y | z).
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It would seem now that we are all but done. But showing that the potential inner product
respects scalar multiplication is not so easy. We have to work with the complex rationals
D = Q + iQ.

Lemma 5. Suppose that r ∈ D and that x, y ∈ X, then (rx | y) = r(x | y).

Proof. It follows immediately from Lemma 4, that for all n ∈ N, we have (nx | y) = n(x | y).
It is then a simple matter to see that (rx | y) = r(x | y) for all r ∈ Q. On the other hand,

4(ix | y) =
3∑

k=0

ik‖ix+ iky‖2

= ‖ix+ y‖2 + i‖ix+ iy‖2 − ‖ix− y‖2 − i‖ix− iy‖2

which, by homogeneity, is

= i
(
−i‖x− iy‖2 + ‖x+ y‖2 − i‖x− iy‖2 − ‖x− y‖2

)
= 4i(x | y).

combining this with the first part of the proof and Lemma 4 gives the result.

Upgrading from r ∈ Q to c ∈ C requires that we prove that the Cauchy Schwarz
inequality holds using only the tools at our disposal so far. Fortunately, the usual proofs
works just fine.

Lemma 6. For all x, y ∈ X, |(x | y)| ≤ ‖x‖‖y‖.

Proof. We can assume that y 6= 0. Note that for all r ∈ D,

0 ≤ ‖x− ry‖2 = (x− ry | x− ry)

= ‖x‖2 − 2 Re r̄(x | y) + |r|2‖y‖2.

But we can find a sequence or rationals rn → (x|y)
‖y‖2 . Then taking limits in the above,

0 ≤ ‖x‖2 − 2
|(x | y)|
‖y‖2

+
|(x | y)|
‖y‖2

,

and the result follows.

Lemma 7. For all c ∈ C, we have (cx | y) = c(x | y).
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Proof. Let rn → c with each rn ∈ D. Then using Lemma 6, we have

|(rnx | y)− (cx | y)| ≤ |rn − c|‖x‖‖y‖,

and (rnx | y) → (cx | y). But by Lemma 5, (rnx | y) = rn(x | y) → c(x | y). This
suffices.

Proof of Proposition 1. It follows from Lemma 4 and Lemma 7 that (· | ·) is linear in its
first variable. By Lemma 2 it is conjugate linear in its second variable, and both positive
and definite by Corollary 1. Therefore (· | ·) is an inner product. It defines the original, and
therefore complete, norm on X by Lemma 1. The Proposition follows.
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