Here is a simple proof of the existence of lots of continuous nowhere differentiable functions on the real line. The argument here follows the outline given in Pedersen's *Analysis Now* [1]. In fact, I will prove the following theorem.

Theorem 1. The collection of continuous nowhere differentiable functions is dense in the Banach space X = C([0,1]) of continuous functions on [0,1] with the supremum norm.

The first step is to consider the collection \mathscr{F}_n of $f \in X$ with the property that there is a $x_f \in [0, 1]$ such that $|f(y) - f(x_f)| \leq n|y - x_f|$ for all $y \in [0, 1]$.

Lemma 2. For each $n \ge 1$, \mathscr{F}_n is closed in X.

Proof. Suppose that $\{f_k\} \subseteq \mathscr{F}_n$ and converges to f in X. For notational convenience, I'll write x_k for x_{f_k} . Using the compactness of [0, 1], we can, by passing to a subsequence and relabeling, assume that $\{x_k\}$ converges to $x \in [0, 1]$. Since $f_k \to f$ uniformly, $\{f_k(x_k)\}$ converges to f(x). Therefore for all $y \in [0, 1]$,

$$f(y) - f(x) \Big| = \lim_{k \to \infty} \Big| f_k(y) - f_k(x_k) \Big|$$

$$\leq n \lim_{k \to \infty} |y - x_k| = n|y - x|.$$

That is, f belongs to \mathscr{F}_n .

Thus f is in \mathscr{F}_n

Lemma 3. If $f \in X$ and if f is differentiable at $x \in [0,1]$, then $f \in \bigcup_{n=1}^{\infty} \mathscr{F}_n$.

Proof. It is straightforward to see that there is a $\delta > 0$ so that $|y - x| < \delta$ implies that

$$|f(y) - f(x)| \le (|f'(x)| + 1)|y - x|.$$

for any $n \ge \max\{2\delta^{-1} ||f||_{\infty}, |f'(x)| + 1\}.$

In the sequel, it will be important to remember that a continuous, piecewise linear function always has one-sided derivatives at every point. I'll use the notation

$$D^+f(x) = \lim_{h \to 0^+} \frac{f(x+h) - f(x)}{h}$$
 and $D^-f(x) = \lim_{h \to 0^-} \frac{f(x+h) - f(x)}{h}$

If $|D^+f(x)| \ge n$ and $|D^-f(x)| \ge n$ for all $x \in [0,1]$, then I'll write $f \in PW_n$. Thus PW_n is the collection of continuous, piecewise linear functions whose one-sided derivatives are *always* numerically larger than n. It will also be handy to let ϕ be the continuous function on \mathbf{R} of period one determined by

$$\phi(x) = \begin{cases} 2x & \text{if } 0 \le x \le \frac{1}{2} & \text{and} \\ 2 - 2x & \text{if } \frac{1}{2} \le x \le 1. \end{cases}$$

Finally let $\phi_n(x) = 2^{-n}\phi(4^n x)$, and notice that ϕ_n is in PW_{2ⁿ} and satisfies $\|\phi_n\|_{\infty} \leq 2^{-n}$. Now we can make our final observation.

L		
-	 	┛

Lemma 4. If $f \in X$, $\epsilon > 0$, and $N \in \mathbb{Z}^+$, then there is a $g \in PW_N$ such that $\|f - g\|_{\infty} < \epsilon$.

Proof. Since f is uniformly continuous, there is a $m \in \mathbb{Z}^+$ such that |x - y| < 1/m implies that $|f(x) - f(y)| < \epsilon/2$. Let $x_i = i/m$ for i = 0, 1, ..., m, and define

$$g_0(\lambda x_i + (1 - \lambda)x_{i+1}) = lf(x_i) + (1 - \lambda)f(x_{i+1})$$

for $i = 0, 1, \ldots, m-1$ and $0 \le \lambda \le 1$. Then g_0 is a continuous, piecewise linear function on [0,1] which satisfies $||f - g_0||_{\infty} < \epsilon/2$. Let $M = \max_{0 \le i \le m-1} m |f(x_{i+1}) - f(x_i)|$. Then $|D^+g_0(x)| \le M$ for all $x \in [0,1]$ (and similarly for $|D^-g_0(x)|$). Thus if we take k such that $2^k \ge M + N$ and $2^{-k} < \epsilon/2$, then $g = g_0 + \phi_k$ will satisfy the requirements of the lemma. \Box

Proof of Theorem 1. Lemmas 2 and 4 imply that each \mathscr{F}_n is closed with empty interior in X. Therefore each $\mathscr{O}_n = \mathscr{F}_n^c$ is open and dense. The Baire Category Theorem then implies that

$$\left(\bigcup_{n=1}^{\infty} \mathscr{F}_n\right)^c = \bigcap_{n=1}^{\infty} \mathscr{O}_n$$

is dense in X. The theorem now follows from Lemma 4.

Remark 5. We've actually shown that the collection of nowhere differentiable functions are a bit more than dense in C([0,1]). In a complete metric space X, the countable intersection of dense open sets must be of "second category;" in particular, such a set must be uncountable if X is.

References

 Gert K. Pedersen, Analysis now, Graduate Texts in Mathematics, vol. 118, Springer-Verlag, New York, 1989. MR90f:46001