Here is a simple proof of the existence of lots of continuous nowhere differentiable functions on the real line. The argument here follows the outline given in Pedersen's Analysis Now [1]. In fact, I will prove the following theorem.

Theorem 1. The collection of continuous nowhere differentiable functions is dense in the Banach space $X=C([0,1])$ of continuous functions on $[0,1]$ with the supremum norm.

The first step is to consider the collection \mathscr{F}_{n} of $f \in X$ with the property that there is a $x_{f} \in[0,1]$ such that $\left|f(y)-f\left(x_{f}\right)\right| \leq n\left|y-x_{f}\right|$ for all $y \in[0,1]$.
Lemma 2. For each $n \geq 1, \mathscr{F}_{n}$ is closed in X.
Proof. Suppose that $\left\{f_{k}\right\} \subseteq \mathscr{F}_{n}$ and converges to f in X. For notational convenience, I'll write x_{k} for $x_{f_{k}}$. Using the compactness of $[0,1]$, we can, by passing to a subsequence and relabeling, assume that $\left\{x_{k}\right\}$ converges to $x \in[0,1]$. Since $f_{k} \rightarrow f$ uniformly, $\left\{f_{k}\left(x_{k}\right)\right\}$ converges to $f(x)$. Therefore for all $y \in[0,1]$,

$$
\begin{aligned}
|f(y)-f(x)| & =\lim _{k \rightarrow \infty}\left|f_{k}(y)-f_{k}\left(x_{k}\right)\right| \\
& \leq n \lim _{k \rightarrow \infty}\left|y-x_{k}\right|=n|y-x| .
\end{aligned}
$$

That is, f belongs to \mathscr{F}_{n}.
Lemma 3. If $f \in X$ and if f is differentiable at $x \in[0,1]$, then $f \in \bigcup_{n=1}^{\infty} \mathscr{F}_{n}$.
Proof. It is straightforward to see that there is a $\delta>0$ so that $|y-x|<\delta$ implies that

$$
|f(y)-f(x)| \leq\left(\left|f^{\prime}(x)\right|+1\right)|y-x| .
$$

Thus f is in \mathscr{F}_{n} for any $n \geq \max \left\{2 \delta^{-1}\|f\|_{\infty},\left|f^{\prime}(x)\right|+1\right\}$.
In the sequel, it will be important to remember that a continuous, piecewise linear function always has one-sided derivatives at every point. I'll use the notation

$$
D^{+} f(x)=\lim _{h \rightarrow 0^{+}} \frac{f(x+h)-f(x)}{h} \quad \text { and } \quad D^{-} f(x)=\lim _{h \rightarrow 0^{-}} \frac{f(x+h)-f(x)}{h} .
$$

If $\left|D^{+} f(x)\right| \geq n$ and $\left|D^{-} f(x)\right| \geq n$ for all $x \in[0,1]$, then I'll write $f \in \mathrm{PW}_{n}$. Thus PW_{n} is the collection of continuous, piecewise linear functions whose one-sided derivatives are always numerically larger than n. It will also be handy to let ϕ be the continuous function on \mathbf{R} of period one determined by

$$
\phi(x)= \begin{cases}2 x & \text { if } 0 \leq x \leq \frac{1}{2} \quad \text { and } \\ 2-2 x & \text { if } \frac{1}{2} \leq x \leq 1\end{cases}
$$

Finally let $\phi_{n}(x)=2^{-n} \phi\left(4^{n} x\right)$, and notice that ϕ_{n} is in $\mathrm{PW}_{2^{n}}$ and satisfies $\left\|\phi_{n}\right\|_{\infty} \leq$ 2^{-n}. Now we can make our final observation.

Lemma 4. If $f \in X, \epsilon>0$, and $N \in \mathbf{Z}^{+}$, then there is a $g \in \mathrm{PW}_{N}$ such that $\|f-g\|_{\infty}<\epsilon$.

Proof. Since f is uniformly continuous, there is a $m \in \mathbf{Z}^{+}$such that $|x-y|<1 / m$ implies that $|f(x)-f(y)|<\epsilon / 2$. Let $x_{i}=i / m$ for $i=0,1, \ldots, m$, and define

$$
g_{0}\left(\lambda x_{i}+(1-\lambda) x_{i+1}\right)=l f\left(x_{i}\right)+(1-\lambda) f\left(x_{i+1}\right)
$$

for $i=0,1, \ldots, m-1$ and $0 \leq \lambda \leq 1$. Then g_{0} is a continuous, piecewise linear function on $[0,1]$ which satisfies $\left\|f-g_{0}\right\|_{\infty}<\epsilon / 2$. Let $M=\max _{0 \leq i \leq m-1} m \mid f\left(x_{i+1}\right)-$ $f\left(x_{i}\right) \mid$. Then $\left|D^{+} g_{0}(x)\right| \leq M$ for all $x \in[0,1]$ (and similarly for $\left.\left|D^{-} g_{0}(x)\right|\right)$. Thus if we take k such that $2^{k} \geq M+N$ and $2^{-k}<\epsilon / 2$, then $g=g_{0}+\phi_{k}$ will satisfy the requirements of the lemma.

Proof of Theorem 1. Lemmas 2 and 4 imply that each \mathscr{F}_{n} is closed with empty interior in X. Therefore each $\mathscr{O}_{n}=\mathscr{F}_{n}^{c}$ is open and dense. The Baire Category Theorem then implies that

$$
\left(\bigcup_{n=1}^{\infty} \mathscr{F}_{n}\right)^{c}=\bigcap_{n=1}^{\infty} \mathscr{O}_{n}
$$

is dense in X. The theorem now follows from Lemma 4.
Remark 5. We've actually shown that the collection of nowhere differentiable functions are a bit more than dense in $C([0,1])$. In a complete metric space X, the countable intersection of dense open sets must be of "second category;" in particular, such a set must be uncountable if X is.

References

[1] Gert K. Pedersen, Analysis now, Graduate Texts in Mathematics, vol. 118, Springer-Verlag, New York, 1989. MR90f:46001

