Dartmouth College Mathematics 81/111 — Homework 4

- 1. Let F be a field of characteristic 0, and let m and n be distinct integers with $\sqrt{m} \notin F$, $\sqrt{n} \notin F$, and $\sqrt{mn} \notin F$.
 - (a) Show that $[F(\sqrt{m}, \sqrt{n}) : F] = 4$.
 - (b) Show by example (with $m/n \notin (\mathbb{Q}^{\times})^2$) that the above statement can be false if we only assume that $\sqrt{m} \notin F$ and $\sqrt{n} \notin F$.
 - (c) Let m_1, m_2, \ldots, m_t be square-free integers $(m_i \neq 0, \pm 1)$ which are relatively prime in pairs. Show that $[\mathbb{Q}(\sqrt{m_1}, \sqrt{m_2}, \dots, \sqrt{m_t}) : \mathbb{Q}] = 2^t$. Hint: A careful induction on t may be of use.
- 2. Show that the class of algebraic field extensions is a distinguished class. Note that 'in theory' Lang has a proof of this in the text, but at least the second part is incredibly terse. I want nice detailed proofs.

Recall that a class C of field extensions is *distinguished* if it satisfies three properties:

- I. Consider a tower of fields $K \subset F \subset E$. The extension E/K is in \mathcal{C} if and only if E/F and F/K are in C.
- II. If E/K is in \mathcal{C} , and F/K is any extension of K (and E, F lie in some common field), then EF/F is in \mathcal{C} .
- III. If E/K and F/K are in \mathcal{C} (and E, F lie in some common field), then EF/K is in С.

We have shown that I and II imply III.

- 3. Field extensions.
 - (a) Let $\alpha = \sqrt[11]{5} \in \mathbb{R}$. Determine (and justify) the degree of $\mathbb{Q}(\beta)/\mathbb{Q}$ where $\beta =$ $3 - 2\alpha + 4\alpha^4 - 5\alpha^9.$
 - (b) Let $n \geq 3$, $\zeta_n = e^{2\pi i/n}$, and consider the cyclotomic field $K = \mathbb{Q}(\zeta_n)$, and F = $\mathbb{Q}(\zeta_n+\zeta_n^{-1})$. Show that $F\subset\mathbb{R}$, and [K:F]=2. The field F is called the maximal real subfield of K.
 - (c) When n = 5 show that $[F : \mathbb{Q}] = 2$, and write $F = \mathbb{Q}(\sqrt{r})$ for some rational number r. Also write $\cos(2\pi/5)$ in terms of radicals of rational numbers.
- 4. Let m > 1 be a square-free integer, and $n \ge 1$ an odd integer. Let F/\mathbb{Q} be any field extension with $[F:\mathbb{Q}] = 2$. Show that $x^n - m$ is irreducible in F[x].

(problem 5 on next page)

5. Determine the splitting field over \mathbb{Q} (and its degree) of $x^4 + x^2 + 1$.

The following might also be useful diagrams for you ${\rm L\!AT}_{\rm E}\!{\rm Xers}.$ First via xy-pic, then via tikz.

