Your Name Goes Here

Dartmouth College

Mathematics 81/111 - Homework 4

1. Let F be a field of characteristic 0 , and let m and n be distinct integers with $\sqrt{m} \notin F$, $\sqrt{n} \notin F$, and $\sqrt{m n} \notin F$.
(a) Show that $[F(\sqrt{m}, \sqrt{n}): F]=4$.
(b) Show by example (with $m / n \notin\left(\mathbb{Q}^{\times}\right)^{2}$) that the above statement can be false if we only assume that $\sqrt{m} \notin F$ and $\sqrt{n} \notin F$.
(c) Let $m_{1}, m_{2}, \ldots, m_{t}$ be square-free integers $\left(m_{i} \neq 0, \pm 1\right)$ which are relatively prime in pairs. Show that $\left[\mathbb{Q}\left(\sqrt{m_{1}}, \sqrt{m_{2}}, \ldots, \sqrt{m_{t}}\right): \mathbb{Q}\right]=2^{t}$. Hint: A careful induction on t may be of use.
2. Show that the class of algebraic field extensions is a distinguished class. Note that 'in theory' Lang has a proof of this in the text, but at least the second part is incredibly terse. I want nice detailed proofs.
Recall that a class \mathcal{C} of field extensions is distinguished if it satisfies three properties:
I. Consider a tower of fields $K \subset F \subset E$. The extension E / K is in \mathcal{C} if and only if E / F and F / K are in \mathcal{C}.
II. If E / K is in \mathcal{C}, and F / K is any extension of K (and E, F lie in some common field), then $E F / F$ is in \mathcal{C}.
III. If E / K and F / K are in \mathcal{C} (and E, F lie in some common field), then $E F / K$ is in \mathcal{C}.

We have shown that I and II imply III.
3. Field extensions.
(a) Let $\alpha=\sqrt[11]{5} \in \mathbb{R}$. Determine (and justify) the degree of $\mathbb{Q}(\beta) / \mathbb{Q}$ where $\beta=$ $3-2 \alpha+4 \alpha^{4}-5 \alpha^{9}$.
(b) Let $n \geq 3, \zeta_{n}=e^{2 \pi i / n}$, and consider the cyclotomic field $K=\mathbb{Q}\left(\zeta_{n}\right)$, and $F=$ $\mathbb{Q}\left(\zeta_{n}+\zeta_{n}^{-1}\right)$. Show that $F \subset \mathbb{R}$, and $[K: F]=2$. The field F is called the maximal real subfield of K.
(c) When $n=5$ show that $[F: \mathbb{Q}]=2$, and write $F=\mathbb{Q}(\sqrt{r})$ for some rational number r. Also write $\cos (2 \pi / 5)$ in terms of radicals of rational numbers.
4. Let $m>1$ be a square-free integer, and $n \geq 1$ an odd integer. Let F / \mathbb{Q} be any field extension with $[F: \mathbb{Q}]=2$. Show that $x^{n}-m$ is irreducible in $F[x]$.
(problem 5 on next page)
5. Determine the splitting field over \mathbb{Q} (and its degree) of $x^{4}+x^{2}+1$.

The following might also be useful diagrams for you $\mathrm{EAT}_{\mathrm{E}} \mathrm{Xers}$. First via xy-pic, then via tikz.

