Dartmouth College

Mathematics 81/111 — Homework 3

1. Given two relatively prime polynomials in $\mathbb{C}[x,y]$, Bézout's theorem in algebraic geometry gives the product of their degrees as an upper bound for the number of points of intersection. For example in \mathbb{R}^2 we expect the parabola $y - x^2 = 0$ will intersect a circle $x^2 + (y - a)^2 - 4 = 0$ in anywhere from 0-4 points (but no more than 4), depending on the value of a.

In this problem we give a first approximation to Bézout's theorem by proving that given two relatively prime polynomials f(x, y), g(x, y) in k[x, y] (k a field), their zero sets (i.e., the set of points (x, y) where f(x, y) = 0 = g(x, y)) is finite.

- (a) Let A be a UFD with field of fractions K. Let $f, g \in A[x]$. Show that f, g are relatively prime in A[x] if and only if f, g are relatively prime in K[x] and their contents, C(f) and C(g), are relatively prime in A.
- (b) Let k be a field and $f, g \in k[x, y]$ be relatively prime. Show that the set of points (x, y) where f(x, y) = 0 = g(x, y) is finite.
- 2. Let $n \ge 1$ and consider the polynomial $f(x,y) = y^n (x^3 x) \in \mathbb{Q}[x,y]$.
 - (a) Characterize the quotient $\mathbb{Q}[x,y]/(y,f(x,y))$ in terms of familiar rings.
 - (b) Show that $A = \mathbb{Q}[x,y]/(f)$ is an integral domain containing an isomorphic copy of $\mathbb{Q}[x]$. Show moreover that A is finitely generated $\mathbb{Q}[x]$ -module, in particular, that $A \subseteq \mathbb{Q}[x](1+(f)) + \mathbb{Q}[x](y+(f)) + \cdots + \mathbb{Q}[x](y^{n-1}+(f))$.
 - (c) Show that $B = \mathbb{Q}[x, y]/(x, f(x, y))$ is an integral domain if and only if n = 1, but in any case is a finite dimensional vector space over \mathbb{Q} .
- 3. Let A be a commutative ring with identity having prime characteristic p, and let $\varphi: A \to A$ be the map $\varphi(a) = a^p$. The map φ is called the *Frobenius map*.
 - (a) Show that φ is a ring homomorphism.
 - (b) Henceforth assume that the ring A is specialized to a field F (having characteristic p). Show that $\varphi: F \to F$ is injective.
 - (c) Show that if F is a finite field, then φ is surjective.
 - (d) Show that if F is a finite field, then for any $f \in F[x]$, there exists a $g \in F[x]$ with $f(x^p) = (g(x))^p$.
 - (e) Show that if $F = \mathbb{Z}/p\mathbb{Z}$, then φ is the identity map, and that for any $f \in F[x]$, $f(x^p) = (f(x))^p$.

(continued on next page)

- 4. Hint: If you don't know where to begin, I would suggest looking up diagonalizable in Lang's index. The reference will give (as a homework problem) an important theorem.
 - (a) Let A be an $n \times n$ matrix over the complex numbers, \mathbb{C} , for which $A^k = I_n$ is the identity matrix for some integer $k \geq 1$. Show that A is diagonalizable.
 - (b) Let F be a field of prime characteristic p, and $A = \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix} \in M_2(F)$. Show that $A^p = I_2$, and that A is diagonalizable if and only if $\alpha = 0$.
- 5. We have seen a number of tests to help determine whether a polynomial is irreducible, and they will serve you well. On the other hand, neither one size nor one tool fits all problems.
 - (a) Show that for all $n \ge 1$, $f(x) = (x-1)(x-2)\cdots(x-n)-1$ is irreducible in $\mathbb{Z}[x]$.
 - (b) Show that for all $n \ge 1$ (except n = 4), $f(x) = (x 1)(x 2) \cdots (x n) + 1$ is irreducible in $\mathbb{Z}[x]$. This part requires a bit more persistence than the first part.