Dartmouth College

Mathematics 81/111 - Homework 1

1. In class (cf. [S] Corollary 7.3.13), we showed that if A is an integral domain, then any polynomial $f \in A[x]$ of degree n has at most n distinct roots in A. The crux of the argument is if a is a root of f, then $f=(x-a) g(x)$ for some $g \in A[x]$ having degree $n-1$. So if $b \neq a$ is another root of f, then $0=f(b)=(b-a) g(b)$, and since A is has no zero divisors, $g(b)=0$ and the result follows by induction.
So now let $A=\mathbb{H}$ be Hamilton's quaternions. \mathbb{H} is a four-dimensional vector space over \mathbb{R} with basis $\{1, i, j, k\}$. It is made into a non-commutative division ring via the relations $i^{2}=j^{2}=k^{2}=-1$ and $i j=k=-j i$. More information is in the exercises to $\S 7.1$ of $[\mathrm{S}]$.
So let $f(x)=x^{2}+1$. Clearly $f(\pm i)=f(\pm j)=f(\pm k)=0$. Mimicking the argument above, we see that i is a root of f, so we write $f=x^{2}+1=(x-i) g(x)=(x-i)(x+i)$. Now j is another root of f and $j \neq i$ (why?) and if we write $0=f(j)=(j-i) g(j)=$ $(j-i)(j+i)$, we are supposed to conclude that $g(j)=j+i=0$, but that is clearly not true (again, why?). So the main question is where has the argument failed and why?
2. Let $\varphi: A \rightarrow B$ be a ring homomorphism.
(a) Suppose that $J \subseteq B$ is an ideal. Show

- $\varphi^{-1}(J)$ is an ideal of A.
- $\varphi\left(\varphi^{-1}(J)\right) \subseteq J$, and give an example to show equality need not hold.
- Show that equality does hold if φ is surjective.
(b) Next let $I \subset A$ be an ideal.
- Show by example that $\varphi(I)$ need not be an ideal of B, but is an ideal if φ is surjective.
- Assuming that φ is surjective, determine $\varphi^{-1}(\varphi(I))$.
(c) Use the above to show that there is a one-to-one correspondence between the ideals of A / I and the ideals of A which contain I.

3. Let A be a ring and I a proper ideal in A. Let $\pi: A \rightarrow A / I$ be the canonical map. For $f \in A[x]$, let f^{π} (Lang's notation) denote the image of f in $(A / I)[x]$.
(a) Show that $A[x] /(I, f(x)) \cong(A / I)[x] /\left(f^{\pi}\right)$.
(b) Use the previous part to that if $p \in \mathbb{Z}$ is a prime, then (x, p) is a maximal ideal in $\mathbb{Z}[x]$.
(c) Characterize all ideals I with $(x) \subseteq I \subseteq \mathbb{Z}[x]$. There is certainly more than one way to proceed.
4. Let D be an integral domain, and $a, b \in D$ not both zero. Recall that we say that $d \in D$ is a gcd of a and b if $d|a, d| b$ and if c is any other common divisor of a and b then $c \mid d$. We know (or will show) that $\mathbb{Q}[x]$ is a UFD, so in particular gcds exist. Let $A=\mathbb{Q}\left[x^{2}, x^{3}\right]$, the subring of $\mathbb{Q}[x]$ generated by x^{2} and x^{3}.
(a) Show that A is not a UFD by showing the $\operatorname{gcd}\left(x^{5}, x^{6}\right)$ does not exist in A.
(b) Determine the structure of $\mathbb{Q}\left[x^{2}, x^{3}\right] /\left(x^{3}\right)$ as a \mathbb{Q}-algebra. You might start by determining its structure as a vector space over \mathbb{Q}.
5. Let $\zeta_{n}=e^{2 \pi i / n} \in \mathbb{C}$ be a primitive nth root of unity, that it a generator for the cyclic group, μ_{n}, of $n t h$ roots of unity (all the complex roots of $x^{n}-1$).
(a) Suppose that k, m are integers relatively prime to n. Show that $\frac{\zeta_{n}^{m}-1}{\zeta_{n}^{k}-1}$ is a unit in the ring $\mathbb{Z}\left[\zeta_{n}\right]$.
(b) Show that if $n>3$ is odd, then $\left(\zeta_{n}^{2}-1\right) /\left(\zeta_{n}-1\right)$ has infinite order in $\mathbb{Z}\left[\zeta_{n}\right]^{\times}$.
