Your Name Goes Here

Dartmouth College
 Mathematics 81/111 - Homework 5

1. Let L / K be an extension of fields. We say that K is algebraically closed in L if the only elements of L which are algebraic over K are the elements of K. Let x be transcendental over K.
(a) Show that K is algebraically closed in $K(x)$.
(b) Let ξ be any element of $K(x) \backslash K$. Show that $K(x) / K(\xi)$ is an algebraic extension.
2. Let K / F be a field extension of degree n.
(a) For any $\alpha \in K$, show that $T_{\alpha}: K \rightarrow K$ given by left multiplication by α is an F-linear transformation on K.
(b) Prove that K is isomorphic to a subfield of $M_{n}(F)$. In particular this shows that $M_{n}(F)$ contains an isomorphic copy of all field extensions of F having degree dividing n.
3. Finding minimal polynomials.
(a) Let L / F be an algebraic extension of fields, and $\alpha \in L$. Let $m_{\alpha, F}=x^{n}+a_{n-1} x^{n-1}+$ $\cdots+a_{0}$ be the minimal polynomial of α over F, and put $K=F(\alpha)$. Consider the linear transformation T_{α} of the previous problem. Compute the matrix $\left[T_{\alpha}\right]_{\mathcal{B}}$ of T_{α} with respect to the basis $\mathcal{B}=\left\{1, \alpha, \ldots, \alpha^{n-1}\right\}$ of K / F, and show its characteristic polynomial is $m_{\alpha, F}$.
(b) First, let's do a simple example. Let $F=\mathbb{Q}$ and $\alpha=\sqrt[5]{2}$. Show that the characteristic polynomial of $\left[T_{\alpha}\right]_{\mathcal{B}}$ is the expected $x^{5}-2$.
(c) Now suppose that $\beta=1+\sqrt[5]{8}+\sqrt[5]{16}$. We know from a simple argument on degrees of towers that the degree of β over \mathbb{Q} is 5 . Computing the matrix of T_{β} with respect to $\left\{1, \beta, \ldots, \beta^{4}\right\}$ would be painful. Instead, compute the matrix of T_{β} with respect to the basis $\mathcal{B}=\left\{1, \alpha, \ldots, \alpha^{4}\right\}$ where $\alpha=\sqrt[5]{2}$ and the resulting characteristic polynomial. Is this $m_{\beta, \mathbb{Q}}$? If so why? If not, why not?
4. Fields of characteristic p.
(a) Let K be a field of characteristic p, and let $a \in K$. Show that if a has no p th root in K, then $x^{p^{n}}-a$ is irreducible in $K[x]$ for any $n \geq 1$.
(b) Show that every element of a finite field can be written as the sum of two squares in that field.
5. A field K is called perfect if either it has characteristic 0 , or has characteristic p and $K^{p}=K$ (that is, the Frobenius map is an automorphism of K).
(a) Show that any algebraic extension of a perfect field is separable.
(b) Give (and justify) an example of a field which is not perfect.
6. Let $\sqrt[7]{2}$ be the real seventh root of 2 , and ζ_{7} a primitive 7 th root of unity in \mathbb{C}. Show that -1 cannot be written as a sum of squares in $\mathbb{Q}\left(\sqrt[7]{2} \zeta_{7}\right)$
