Dartmouth College Mathematics 81/111 — Homework 5

- 1. Let L/K be an extension of fields. We say that K is algebraically closed in L if the only elements of L which are algebraic over K are the elements of K. Let x be transcendental over K.
 - (a) Show that K is algebraically closed in K(x).
 - (b) Let ξ be any element of $K(x) \setminus K$. Show that $K(x)/K(\xi)$ is an algebraic extension.
- 2. Let K/F be a field extension of degree n.
 - (a) For any $\alpha \in K$, show that $T_{\alpha} : K \to K$ given by left multiplication by α is an *F*-linear transformation on *K*.
 - (b) Prove that K is isomorphic to a subfield of $M_n(F)$. In particular this shows that $M_n(F)$ contains an isomorphic copy of all field extensions of F having degree dividing n.
- 3. Finding minimal polynomials.
 - (a) Let L/F be an algebraic extension of fields, and $\alpha \in L$. Let $m_{\alpha,F} = x^n + a_{n-1}x^{n-1} + \cdots + a_0$ be the minimal polynomial of α over F, and put $K = F(\alpha)$. Consider the linear transformation T_{α} of the previous problem. Compute the matrix $[T_{\alpha}]_{\mathcal{B}}$ of T_{α} with respect to the basis $\mathcal{B} = \{1, \alpha, \ldots, \alpha^{n-1}\}$ of K/F, and show its characteristic polynomial is $m_{\alpha,F}$.
 - (b) First, let's do a simple example. Let $F = \mathbb{Q}$ and $\alpha = \sqrt[5]{2}$. Show that the characteristic polynomial of $[T_{\alpha}]_{\mathcal{B}}$ is the expected $x^5 2$.
 - (c) Now suppose that $\beta = 1 + \sqrt[5]{8} + \sqrt[5]{16}$. We know from a simple argument on degrees of towers that the degree of β over \mathbb{Q} is 5. Computing the matrix of T_{β} with respect to $\{1, \beta, \ldots, \beta^4\}$ would be painful. Instead, compute the matrix of T_{β} with respect to the basis $\mathcal{B} = \{1, \alpha, \ldots, \alpha^4\}$ where $\alpha = \sqrt[5]{2}$ and the resulting characteristic polynomial. Is this $m_{\beta,\mathbb{Q}}$? If so why? If not, why not?
- 4. Fields of characteristic p.
 - (a) Let K be a field of characteristic p, and let $a \in K$. Show that if a has no pth root in K, then $x^{p^n} a$ is irreducible in K[x] for any $n \ge 1$.
 - (b) Show that every element of a finite field can be written as the sum of two squares in that field.

- 5. A field K is called **perfect** if either it has characteristic 0, or has characteristic p and $K^p = K$ (that is, the Frobenius map is an automorphism of K).
 - (a) Show that any algebraic extension of a perfect field is separable.
 - (b) Give (and justify) an example of a field which is not perfect.
- 6. Let $\sqrt[7]{2}$ be the real seventh root of 2, and ζ_7 a primitive 7th root of unity in \mathbb{C} . Show that -1 cannot be written as a sum of squares in $\mathbb{Q}(\sqrt[7]{2}\zeta_7)$