Dartmouth College

Mathematics 81/111 - Homework 3

1. A first approximation to a theorem of Bézout. It shows that if two curves in the plane are described by the zero sets of relatively prime polynomials, then the two curves intersect in only a finite number of points. For example in \mathbb{R}^{2} we expect the parabola $Z\left(y-x^{2}\right)$ will intersect a circle $Z\left(x^{2}+(y-a)^{2}-4\right)$ in anywhere from $0-4$ points, depending on the value of a. Bézout's theorem gives as an upper bound the product of the degrees of the polynomials with equality holding in a nice setting like the projective plane $\mathbb{P}^{2}(\mathbb{C})$. In this problem, you show only that the number of points of intersection is finite.
(a) Let A be a UFD with field of fractions K. Let $f, g \in A[x]$. Show that f, g are relatively prime in $A[x]$ if and only if f, g are relatively prime in $K[x]$ and their contents, $C(f)$ and $C(g)$, are relatively prime in A.
(b) Let k be a field and $f, g \in k[x, y]$ be relatively prime. Show that $Z(\{f, g\})=$ $Z(f) \cap Z(g)$ is a finite set of points, that is show that the algebraic set consisting of the common zeros of f and g is finite.
2. Let F be a field and $f \in F[x]$ a non-constant polynomial.
(a) Characterize all the maximal ideals in $F[x]$ containing $\langle f\rangle$.
(b) Determine all the ideals of the quotient ring $\mathbb{Z}[x] /\left\langle 5, x^{3}+2\right\rangle$.
3. Let $n \geq 1$ and consider the polynomial $f(x, y)=y^{n}-\left(x^{3}-x\right) \in \mathbb{Q}[x, y]$.
(a) Characterize the quotient $\mathbb{Q}[x, y] /(y, f(x, y))$ in terms of familiar rings.
(b) Show that $A=\mathbb{Q}[x, y] /(f)$ is an integral domain containing an isomorphic copy of $\mathbb{Q}[x]$. Show moreover that A is finitely generated $\mathbb{Q}[x]$-module, in particular, that $A \subseteq \mathbb{Q}[x](1+(f))+\mathbb{Q}[x](y+(f))+\cdots+\mathbb{Q}[x]\left(y^{n-1}+(f)\right)$.
(c) Show that $B=\mathbb{Q}[x, y] /(x, f(x, y))$ is an integral domain if and only if $n=1$, but in any case is a finite dimensional vector space over \mathbb{Q}.
4. Let A be a commutative ring with identity having prime characteristic p, and let $\varphi: A \rightarrow A$ be the map $\varphi(a)=a^{p}$. The map φ is called the Frobenius map.
(a) Show that φ is a ring homomorphism.
(b) Henceforth assume that the ring A is specialized to a field F (having characteristic $p)$. Show that $\varphi: F \rightarrow F$ is injective.
(c) Show that if F is a finite field, then φ is surjective.
(d) Show that if F is a finite field, then for any $f \in F[x]$, there exists a $g \in F[x]$ with $f\left(x^{p}\right)=(g(x))^{p}$.
(e) Show that if $F=\mathbb{Z} / p \mathbb{Z}$, then φ is the identity map, and that for any $f \in F[x]$, $f\left(x^{p}\right)=(f(x))^{p}$.
5. Hint: If you don't know where to begin, I would suggest looking up diagonalizable in Lang's index. The reference will give (as a homework problem) an important theorem.
(a) Let A be an $n \times n$ matrix over the complex numbers, \mathbb{C}, for which $A^{k}=I_{n}$ is the identity matrix for some integer $k \geq 1$. Show that A is diagonalizable.
(b) Let F be a field of prime characteristic p, and $A=\left(\begin{array}{cc}1 & \alpha \\ 0 & 1\end{array}\right) \in M_{2}(F)$. Show that $A^{p}=I_{2}$, and that A is diagonalizable if and only if $\alpha=0$.
6. For a commutative ring A, define the Krull dimension of A to be the maximum possible length of a chain $P_{0} \subsetneq P_{1} \subsetneq \cdots \subsetneq P_{n}$ of distinct prime ideals in A. The given chain has length n and there are rings with infinite dimension.
(a) Show that an integral domain with Krull dimension 0 is a field.
(b) Show that every PID (which is not a field) has Krull dimension 1.
(c) Show that $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ has Krull dimension $\geq n+1$.
