MATH 10

INTRODUCTORY STATISTICS

Tommy Khoo
Yourfriendly neighbourhood graduate student.

Tentative Plans For Midterm Exam

-Week 5-26 April (Thursday), 1 hour 45 minutes.

- In class, here in this room.
- Tentatively looking at 6 questions, 15 minutes per question.
- Will confirm details next week.
- This is a fast paced course. If you feel that you're lagging behind, I can review key points and work through sample problems during office hours (or by appointment).

Week 3

- Chapter 5 - Probability
- Chapter 7 - Normal Distribution
- Chapter 9 - Sampling Distributions \leftarrow today's lecture
Sampling distributions of the mean and p. Difference between means. Central Limit Theorem.
- Chapter 8 - Advanced Graphs

Chapter 5, Section 13 - Base Rates

Sample exam problem with Bayes Theorem

Police officers in a town are stopping drivers at random and subjecting them to a breathalyzer test that detects alcohol intoxication.
During the operation, there were 5000 drivers on the road. One of those drivers were chosen at random, say Tommy, and he tested positive (>_<!!!).

Chapter 5, Section 13 - Base Rates

Sample exam problem with Bayes Theorem

Police officers in a town are stopping drivers at random and subjecting them to a breathalyzer test that detects alcohol intoxication.
During the operation, there were 5000 drivers on the road. One of those drivers were chosen at random, sayTommy, and he tested positive (>_<!!!).
The police were using breathalyzers that detects drunkenness with 100\% probability of IF the driver is drunk. (positive result)

If the driver is sober, it has a 99% probability of reporting that the driver is NOT drunk. (negative result)

Chapter 5, Section 13 - Base Rates

During the operation, there were 5000 drivers on the road. One of those drivers were chosen at random, say Tommy, and he tested positive (>_<!!!).

The police were using breathalyzers that detects drunkenness with 100\% probability of IF the driver is drunk. (positive result)

If the driver is sober, it has a 99% probability of reporting that the driver is NOT drunk. (negative result)

1. The police wants to deport Tommy because they think the probability that he is driving drunk is 99%. Is their claim true or false based on the information so far? Explain. (2 pts)

Chapter 5, Section 13 - Base Rates

The police were using breathalyzers that detects drunkenness with 100\% probability of IF the driver is drunk. (positive result) If the driver is sober, it has a 99\% probability of reporting that the driver is NOT drunk. (negative result)

Now you are told that out of the 5000 drivers on the road, 5 of them are drunk, while the rest are sober.
2. If all 4995 sober drivers are given the breathalyzer test, approximately how many would get a positive result? (1 pt)
3. The police was picked a driver at random from the 5000 . What is the probability that he or she is sober? You do not have to simplify your answer. (1 pt)

Chapter 5, Section 13 - Base Rates

The police were using breathalyzers that detects drunkenness with 100\% probability of IF the driver is drunk. (positive result) If the driver is sober, it has a 99\% probability of reporting that the driver is NOT drunk. (negative result)

Now you are told that out of the 5000 drivers on the road, 5 of them are drunk, while the rest are sober.
4. Using Bayes Theorem, write down a numerical fraction for the probability that a randomly selected driver is not drunk, given that he or she got a positive result. (4 pts)

Chapter 7, Section 4 - Areas Under Normal Distributions
-Take any interval $[a, b]$.

- The area under the curve, within this interval, is the probability that a normally distributed variable has value in $[a, b]$.

Normal distribution
mean $=100$
standard deviation $=20$
Blue area $=0.68$ or 68%

Chapter 7, Section 4 - Areas Under Normal Distributions

- Take any interval $[a, b]$.
- The area under the curve, within this interval, is the probability that a normally distributed variable has value in $[a, b]$.
- Alternatively, for an approximately normal set of data, the normal curve tells us the proportion of data with values within $[\mathrm{a}, \mathrm{b}]$.

Normal distribution
mean $=100$
standard deviation $=20$
Blue area $=0.68$ or 68%

Chapter 7, Section 4 - Areas Under Normal Distributions

- The " $68-95-99.7$ " heuristic.
- You should know this for the exam.
- ...or at remember enough to look it up a z-value table.

The 68-95-99.7 rule in practice for an approximately normal histogram. Image from Wikipedia.

Chapter 7, Section 4 - Areas Under Normal Distributions

Example exam question:

- The proportion of scores for 1,000 students in a class are well approximated by a normal distribution, with mean 50 and standard deviation 10.
- Approximately how many students scored 70 and above? (2 pts)
- Show your work. Illustrations are allowed.

Chapter 7, Section 6 - Standard Normal

- Alternative way to solve this question.
- Let X be a normal distributed (random) variable with mean μ and variance σ^{2}.
- Apply the linear transformation: $Z=\frac{X-\mu}{\sigma}$.
- Now Z is standard normal.
\rightarrow normally distributed, mean 0 , variance 1

Chapter 7, Section 6 - Standard Normal

- Apply the linear transformation: $Z=\frac{X-\mu}{\sigma}$.
- Now Z is standard normal.
\rightarrow normally distributed, mean 0 , variance 1
- The proportion of scores for 1,000 students in a class are well approximated by a normal distribution, with mean 50 and standard deviation 10.
- Approximately how many students scored 70 and above? (2 pts)
- Will be used a lot for hypothesis testing later in the course.

Chapter 7, Section 4 - Areas Under Normal Distributions

Let's try a tougher sample exam question:

- The weights for 500 bars of gold are well approximated by a normal distribution, with mean 100 grams and standard deviation 20 grams.
- Approximately how bars of gold weigh between 100 grams and 130 grams inclusive? (2 pts)

Chapter 7, Section 4 - Areas Under Normal Distributions

- The weights for 500 bars of gold are well approximated by a normal distribution, with mean 100 grams and standard deviation 20 grams.
- Approximately how bars of gold weigh between 100 grams and 130 grams inclusive? (2 pts)
- Two ways to think about this...

1. Area under curve as proportion of those 500 bars of gold.
2. Area under curve as the probability of getting a bar of gold within certain weights.

Break time!! |o/

12 minutes

- Break starts after I hand out the exercise.
- Circle is a timer that becomes blue. O_o

(please ignore if it glitches)

Chapter 9, Section 2 - Introduction

- Inferential statistics.
- Have population, and a variable of interest, X.
- Take a simple random sample, calculate estimators for certain aspects of the population distribution of X.
- E.g. sample mean = estimator for population mean.
- E.g. estimator of the sample variance.
- We will now quantify how "good" these estimators are.

Chapter 9, Section 6 - Sampling Distribution of the Mean

-The sample mean, of a simple random sample A with size n, is a random variable.

- If you collect another simple random sample B with size n, it is likely to have a different sample mean.
- If \bar{X}_{n} is a random variable that represents the mean of a sample of size n, then \bar{X}_{n} has a distribution.

Chapter 9, Section 6 - Sampling Distribution of the Mean

- The distribution of \bar{X}_{n} is the sampling distribution of the mean (of a sample of size n).
- This distribution has mean $\mu_{M}=\mu$, where μ is the population mean.
- This distribution has variance $\sigma_{M}^{2}=\frac{\sigma^{2}}{n}$, where σ^{2} is the population variance.

Chapter 9, Section 6 - Sampling Distribution of the Mean

- Sampling Distribution of the Mean has,

$$
\mu_{M}=\mu \quad \sigma_{M}^{2}=\frac{\sigma^{2}}{n}
$$

- Standard error, $\sigma_{M}=\frac{\sigma}{\sqrt{n}}$.

Chapter 9, Section 6 - Sampling Distribution of the Mean

- Sampling Distribution of the Mean has,

$$
\mu_{M}=\mu \quad \sigma_{M}^{2}=\frac{\sigma^{2}}{n}
$$

- Standard error, $\sigma_{M}=\frac{\sigma}{\sqrt{n}}$.

If the population has finite mean μ, and finite non-zero variance σ^{2}, then the sampling distribution of the mean becomes better approximated by a normal distribution $\mathrm{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$, as sample size n increases.

Chapter 9, Section 6 Sampling Distribution of the Mean

Population

Distribution of Sample Mean, $\mathrm{N}=5$

- Central limit theorem works for any distribution with finite mean and finite non-zero variance.

Distribution of Sample Mean, $\mathrm{N}=25$

Chapter 9, Section 7 - Difference Between Means

- Finally, we can use statistics to compare two populations.
- Suppose you have two simple random samples with size n_{1} and n_{2}.
- Samples from population 1 and 2 respectively.
- Calculate their sample means M_{1} and M_{2}.
- The difference has a sampling distribution with mean
$\mu_{M_{1}-M_{2}}=\mu_{1}-\mu_{2}$.

Chapter 9, Section 7-Difference Between Means

- The difference has a sampling distribution with mean $\mu_{M_{1}-M_{2}}=\mu_{1}-\mu_{2}$.
- And variance $\sigma_{M_{1}-M_{2}}^{2}=\sigma_{M_{1}}^{2}+\sigma_{M_{1}}^{2}$.
- $\sigma_{M_{i}}^{2}=\frac{\sigma^{2}}{n_{i}}$, which is variance of the sampling distribution of M_{i}.
- Since the sample means are independent (as random variables), the variance sum law was used to derive the variance.
- $\sigma_{M_{1}-M_{2}}^{2}=\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}$

Chapter 9, Section 7 - Difference Between Means

- The difference has a sampling distribution with mean $\mu_{M_{1}-M_{2}}=\mu_{1}-\mu_{2}$.
- And variance $\sigma_{M_{1}-M_{2}}^{2}=\sigma_{M_{1}}^{2}+\sigma_{M_{1}}^{2}=\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}$.
- Standard error $\sigma_{M_{1}-M_{2}}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$.
- This becomes much easier if the sample sizes and population variances are equal.

Public Service Announcement

- We are skipping "Chapter 9, Section 8, Sampling Distribution of r".
- This chapter is about the sampling distribution of the correlation coefficient.
- Not usually taught at Math 10 level.
- So we're nuking it from orbit (it's the only way to be sure).

