MATH 10

INTRODUCTORY STATISTICS

Tommy Khoo
Your friendly neighbourhood graduate student.

Week 1

- Chapter 1 - Introduction

What is Statistics? Why do you need to know Statistics?
Technical lingo and concepts: Sampling, variables, percentiles, scales, distributions, summation, linear transformations, logarithms.

- Chapter 2-Graphing Distributions \leqslant this lecture

Visualizing data containing qualitative and quantitative variables. Histograms etc.

- Chapter 3 - Summarizing Distributions
\leftarrow this lecture
Central tendency: mean, median, mode. Variability: variance.

Levels of Measurement - Chapter 1, Section 9

This is one way of classifying the type of measurement.
Understand = yes. Memorize = no.

Qualitative variables

Nominal : no order/rank. E.g. hair color, race.
Ordinal : ordered/ranked. E.g. 1-5, how satisfied with the food?

Quantitative variables

Interval : differences have the same meaning. E.g. \$100-\$50 = \$200-\$150
Ratio : has a zero position, and has a ratio interpretation. E.g. 2 m is twice the length of 1 m (money works too but not degree F or C temperature)

Simple random sampling, Stratified sampling example.

E.g. Population = everyone in New Hampshire.
E.g. Simple random sample $=$ pick 1000 at random .
E.g. Stratified = pick 500 male, 500 females at random (assuming 50/50 male/female in NH)

We hope the sample is representative of the population in the sense that if we want to study the distribution of heights or income in the population, we hope the sample would give a good estimate of that.

Our sample of 1000 is like a "mini" New Hampshire. We can use it study more than heights or income if we have collected the data.

Addendum 2 - Populations and Samples

Hypothetical Populations - Treatment and Control Group

Start with everyone in a particular location, say New Hampshire, that has the disease. The drug is not available in NH yet. So, no one is taking it.

Population one : everyone in NH with the disease, and not taking the drug.
Population two (hypothetical) : everyone in NH with the disease, and is now all taking the drug.

Control group : a sample from population one.
Treatment group : is a sample from the hypothetical population two.

The treatment group is "representative" in a restricted and precise sense: samples are used only to study treatment efficacy. Unlike the "mini" New Hampshire sample in the previous slide, it is not meaningful to study other aspects of the hypothetical population here.

Note : there could actually be a population in say California that has the disease and is taking the drug, but has little evidence for its efficacy. This clinical trial might be conducted to see if the drug should be legalized in New Hampshire. The treatment group would indirectly inform us about drug efficacy for the Californian population.

Hypothetical Populations - A Cleaner Example

In the chapter on probability, we will define a fair coin as one that shows up heads in 50% of a large number of coin toss.

Population (hypothetical) : 100 million coin tosses.
Sample : 1,000 coin tosses.

We hope that the sample is representative of the hypothetical population.
We will learn how to derive estimates from samples and quantify errors later in this course.

Chapter 2 -Graphing Distributions

- Visualizing data helps us see patterns, support our conjectures, and can also help sell our ideas.
- https://www.youtube.com/watch?v=jbkSRLYSojo
- Hans Rosling, Statistician, on the BBC YouTube channel.

Sometimes, visualization sell our ideas a little too well.
(chapter 2, section 2)

Chapter 2

- Qualitative variables
- Not numerical. Usually categories. E.g. hair color, favorite movie etc.
- Use frequency tables, pie charts, bar charts to visualize.

Chapter 2

- Qualitative variables
- Not numerical. Usually categories. E.g. hair color, favorite movie etc.
- Use frequency tables, pie charts, bar charts to visualize.
- Quantitative variables
- Numbers! \rightarrow we will see a lot of these in this course.
- Use stem and leaf, histograms, frequency polygons, box plots, bar charts, line graphs, dot plots.
- We will talk about histograms first then go on to Chapter 3 before giving a quick tour of the rest.

Quantitative variables - Histogram Part 1

- Very useful for visualizing the shape of a distribution when number of observations is large.
- Textbook's example : 642 students, scores ranged from 46 to 167. A simple frequency table will contain over 100 rows.
- Sort the N observations into bins or classes intervals. For this course, we'll stick to the same width for each class.
- How many classes or bins? Trial and error \rightarrow a.k.a. "the eyeball method".
- Sturges' Rule : as close to $\left(1+\log _{2}(N)\right)$ classes as possible.
- Rice Rule : $2 \sqrt[3]{N}$ classes. \rightarrow can differ greatly from Sturge's Rule.
- These good to know, but don't worry, we won't ask you to

Table 1. Grouped Frequency Distribution of Psychology Test Scores

Interval's Lower Limit	Interval's Upper Limit	Class Frequency
39.5	49.5	3
49.5	59.5	10
59.5	69.5	53
69.5	79.5	107
79.5	89.5	147
89.5	99.5	130
99.5	109.5	78
109.5	119.5	59
119.5	129.5	36
129.5	139.5	11
139.5	149.5	6
149.5	159.5	1
159.5	169.5	1

Quantitative variables - Histogram Part 2

Figure 1. Histogram of scores on a psychology test.

- Vertical axis is the frequency or count for each class/bin.
- We can divide frequency by total number of observations, to get relative frequencies or proportions instead.
- E.g. Relative frequency or proportion of scoring between 69.5 and 79.5 is $107 / 642=0.1667$.

Table 1. Grouped Frequency
Distribution of Psychology Test Scores

Interval's Lower Limit	Interval's Upper Limit	Class Frequency
39.5	49.5	3
49.5	59.5	10
59.5	69.5	53
69.5	79.5	107
79.5	89.5	147
89.5	99.5	130
99.5	109.5	78
109.5	119.5	59
119.5	129.5	36
129.5	139.5	11
139.5	149.5	6
149.5	159.5	1
159.5	169.5	1

Quantitative variables - Histogram Part 3

Easy Example:

Value Frequency
$\begin{array}{ll}0.6 & 20 \\ 0.75 & 20\end{array}$
1.220
1.720
1.820

- Why 3 classes/bins? No reason in particular.
- No gaps between bars in histogram, unlike bar charts.
2.4

20
2.7

10

- Class intervals: $[0,1),[1,2),[2,3)$.

Chapter 3 - Summarizing Distributions

- Summary statistics.
- How would you summarize your data?
- Perhaps visualize the data with a distribution. Say using a histogram.
- How can we summarize the distribution?
- Central tendency : is there "central" value that the data is centered around?
- Variability : how "spread" out is the data? How much variation?

Chapter 3, Section 2 to 9-Central Tendency

- We want some kind of estimate for the "center" of a distribution.
- We start with three heuristic notions to think about the "center".
- Then, we will tie them to precise mathematical formulas.
- Balance Scale
- Sum of Absolute Deviations
- Smallest Squared Deviations

Balance Scale

Can be useful to think about how the mean (fulcrum) moves when adding outliers.

Sum of Absolute Deviations

- The "balance scale" heuristic is not very practical as we do not have an easy way to calculate the point at which the distribution balances. (technically we do but.. :p)
- Another idea/heuristic : what if we look at the sum of absolute deviations from a particular number?

Table 2. An example of the sum of absolute deviations

Values	Absolute Deviations from $\mathbf{1 0}$
2	
3	
4	7
9	6
16	
Sum	6

-Then find the number that minimizes this?

Sum of Squared Deviations

- A final idea/heuristic : what if we look at the sum of squared deviations from a particular number?
-Then find the number that minimizes this?
- Intuitively, how does this differ from the previous sum of absolute deviations?

Table 3. An example of the sum of squared deviations.

Values	Squared Deviations from 10
2	64
3	49
4	36
9	1
16	36
Sum	186

Chapter 3, Section 2 to 9 - Central Tendency

- We started with three heuristic notions to think about the "center".
- Now, we can tie them to precise mathematical formulas.
- Mean : sum all the numbers, divide by number of observations.
- Median : order the numbers, find the observation in the middle. For even number of observations, we take the average of the middle two observations.
- Mode : the most frequent value. Can have no mode or multiple modes.

Chapter 3, Section 2 to 9 - Central Tendency

- How does the mean and median connect to our heuristics about central tendency?
- Chapter 3, section 8.
- Mean : balances the scale (why? Later ©), minimize the sum of squared deviations.
- Median : minimizes the sum of absolute deviations only.

Chapter 3, Section 11 - Comparing mean, median and mode.

- How do they relate to the shape of the distributions?
- Symmetric distributions : mean, median, mode are equal or close to equal.
- Skewed distributions : depends. E.g. large positive skew shown below.

- In this case, the mean is greater than the median. (possible exam qns)
- Intuition : the large numbers in long positive tail pushes the mean up.
- Mean is useful for symmetric distributions. For skewed, report as much as possible (mean, median etc).

BREAK TIME! |o/

- 10 minutes break this time.
- Question 13, 14 will be taught after the break. Feel to try and figure them out if you're bored (the derivation is not too difficult).
- Question 15 is not something you will see on the exam. ($\left.{ }^{\circ}{ }^{\circ} \sigma\right)$

Variability - Chapter 3, Section 12 \& 13

- We have a notion of central tendency or the "center" of a distribution.
- The two distributions below are both centered at zero, but can you see the difference in the values on the horizontal axis? How can we mathematically quantify this difference?

Variability - Chapter 3, Section 12 \& 13

- Range : highest minus lowest value
- Interquartile Range : $75^{\text {th }}$ percentile minus $25^{\text {th }}$ percentile
- Population Variance :

$$
\sigma^{2}=\frac{\sum(X-\mu)^{2}}{N}
$$

- Estimate of the Variance :

$$
s^{2}=\frac{\sum(X-M)^{2}}{N-1}
$$

- There are alternative formulas for these in the textbook section.
- Standard deviation (SD) : square root of the variance (for population or estimate of the SD)

Two Misc. Things...

1) Estimator of Variance: Why divide by $(N-1)$?

Dividing by just N underestimates the variance. Intuition : the sample mean M was chosen to minimize the sum of square deviations in the first place.
2) What is the mean deviation from the mean? (for population and sample)

$$
\frac{\sum(X-\mu)}{N}, \quad \frac{\sum(X-M)}{N}
$$

What do linear transformations do to mean and variance?

- Chapter 3, section 18.
- Y is a linear transformation of X, if it is of the form $Y=b X+a$, where a, b are fixed numbers.
- Y is now a new variable.
- If variable X has mean μ, then the new variable Y will have mean $\mathrm{b} \mu+\mathrm{a}$.
- If variable X has variance σ^{2}, then the new variable Y will have variance $b^{2} \sigma^{2}$.

Summing Variances - Chapter 3, section 19

- If X and Y are uncorrelated then we can apply the sum formula :

$$
\sigma_{X \pm Y}^{2}=\sigma_{X}^{2}+\sigma_{Y}^{2}
$$

- Examples from the textbook:

1) Thousands of samples of randomly paired unrelated measurements.
2) Thousands of samples of verbal and quantitative SAT scores, each pair belonging to the same person. \rightarrow correlated!

Will be revisiting this formula when we do "bivariate" data in Chapter 4.

Back to Chapter 2

-We will finish up this lecture by taking a quick look at all the ways to graph distributions of quantitative variables (numbers) mentioned by the textbook.

Quantitative variables - Stem and Leaf Display

Table 1. Number of touchdown passes.

37,	33,	33,	32,	29,	28,
22,	22,	21,	21,	21,	20,
20,	22,				
18,	18,	18,	18,	16,	15,
12,	14,	14,	14,		
12,					

```
3|2337
2|001112223889
1|2244456888899
0|69
```

Figure 1. Stem and leaf display of the number of touchdown passes.

Quantitative variables - Frequency Polygon

- Frequency polygon \rightarrow start with a histogram, then connect the midpoint of each bar.
- Good for overlapping two set of data for comparison.

\leftarrow Cumulative frequency polygon

Quantitative variables - Box Plot

Figure 5. The box plot for the women's data with detailed labels.

- For the exam : Median, upper/lower Hinge, mean.

Name	Formula
Upper Hinge	75th Percentile
Lower Hinge	25 th Percentile
H-Spread	Upper Hinge - Lower Hinge
Step	1.5 x H-Spread
Upper Inner Fence	Upper Hinge + 1 Step
Lower Inner Fence	Lower Hinge - 1 Step
Upper Outer Fence	Upper Hinge + 2 Steps
Lower Outer Fence	Lower Hinge - 2 Steps
Upper Adjacent	Largest value below Upper Inner Fence
Lower Adjacent	Smallest value above Lower Inner Fence
Outside Value	A value beyond an Inner Fence but not beyond an Outer Fence
Far Out Value	A value beyond an Outer Fence

Quantitative variables - Bar Charts

- We have seen this numerous times. Refer to your textbook Chapter 2, Section 9 for more details.
- Examples from textbook to show how bar charts can be used to display data that are not just frequencies/counts.

Figure 2. Percent increase in three stock indexes from May $24^{\text {th }} 2000$ to May $24^{\text {th }} 2001$.

Figure 3. Percent change in the CPI over time. Each bar represents percent increase for the three months ending at the date indicated.

Quantitative variables - Line Graph

- Simply bar graphs with the top of the bars represented by points (jointed by lines) instead of bars. (not the same as frequency polygon)

Quantitative variables - Dot/Scatter Plot

- Very useful for Chapter 4 - Bivariate Data

Figure 4. An alternate way of showing the number of people playing various card games on a Sunday and on a Wednesday.

Figure 3. A bar chart of the number of people playing different card games on Sunday and Wednesday.

