MATH 10

INTRODUCTORY STATISTICS

Tommy Khoo

Your friendly neighbourhood graduated student.

Homework and Stuff

- Deadline extended : hand in a hard copy during Thursday's class.
- I will go through some examples today to help with this homework.

• Office hours is getting crowded. (• '3`•)

- Will try to set up a group tutoring/review session via Email. Weekend?
- Alternatively : I can work through HW4 on Weds office hours.

Homework and Stuff

• Next homework is lighter and has more practice questions on hypothesis testing.

• Homework will be posted by Weds noon.

• Answer key for midterm delayed but will also be posted Weds noon.

Week 7

final exam in 3 weeks

• Chapter 13 – Interestingly titled "Power"

The idea of the "power" of a test.

Chapter 14 – (brief introduction to) Regression

Correction – Binomial Hypothesis Testing

- Emailed out a correction to the slides last week.
- I will tell the grader to give you credit if you used the wrong version of the standard error for homework. Thankfully, I don't think anyone did.

• Recall : sampling distribution of a sample proportion p is approximately Normal with mean π .

- Standard error depends on whether the population proportion π is known.

Correction – Binomial Hypothesis Testing

- Recall : sampling distribution of a sample proportion p is approximately Normal with mean π .
- Standard error depends on whether the population proportion π is known.

• Formula sheet :
$$\sqrt{\frac{\pi(1-\pi)}{n}}$$
 if π known. Otherwise, $\sqrt{\frac{p(1-p)}{n}}$.

• Hypothesis testing : we assume the null hypothesis is true, which means π is known and given by the null hypothesis.

- Recall what we learned about Sampling Distributions.
- Suppose we have a large population, and some variable *X* that we are interested in.
- We take a sample of size n, and calculate the sample mean \overline{X} .

• The sampling distribution of the mean tells us the probability of getting certain values of the sample mean. (dist. of \overline{X})

- Suppose we don't know what the true population mean is.
- But we have some kind of idea or hypothesis about its value.

 H_0 : population mean is μ , H_A : not μ

- Suppose we don't know what the true population mean is.
- But we have some kind of idea or hypothesis about its value.

 H_0 : population mean is μ , H_A : not μ

• Assuming that H_0 is true, then we know what the sampling distribution of the mean is (*estimating the standard error in the t-dist case*).

• We can set a threshold for when we will find H_0 too unlikely and reject it.

 $H_0: population mean is \mu$, $H_A: not \mu$

• We can set a threshold for when we will find H_0 too unlikely and reject it.

• We build this threshold based on our data, which is the sample mean \overline{X} , calculated from a sample of size n.

• More precisely, threshold is based on $P(sample mean \ge \overline{X})$ or $P(sample mean \le \overline{X})$. Let's assume $\overline{X} > \mu$, so we focus on one.

- More precisely, threshold is based on $P(\text{ sample mean } \geq \overline{X})$ or $P(\text{ sample mean } \leq \overline{X})$. Let's assume $\overline{X} > \mu$, so we focus on one.
- Lingo / Convention : *Chapter 11, Section 6 Significant Results*

- Textbook calls this a (one-tailed) probability value or p-value.
- The textbook defines two types: one-tailed and two-tailed p-value.
- Will talk about this later. Just focus on this one-tailed p-value for now.

- More precisely, threshold is based on $P(sample mean \ge \overline{X})$ or $P(sample mean \le \overline{X})$. Let's assume $\overline{X} > \mu$, so we focus on one.
- Using the sampling distribution, we can figure out what $P(sample mean \ge \overline{X})$ is.

- Recall : probability is area under the curve.
- z- or t-tables give you the wrong area under the curve.
- Need to use P(A) = 1 P(not A).

• Using the sampling distribution, we can figure out what $P(sample mean \ge \overline{X})$ is.

• We define a threshold for when H_0 is "too unlikely for us".

- We say that if $P(sample mean \ge \overline{X})$ is "too small", then we "don't believe" in H_0 . So, we reject H_0 .
- Significant level α determines when this probability is "too small".

- Significant level α determines when this probability is "too small".
- Condition depends on which of the two types of test used.

One-tailed test

```
P(\text{ sample mean } \geq \overline{X}) < \alpha
```

Two-tailed test

 $P(\text{ sample mean } \geq \overline{X}) < \alpha/2$

One-tailed test : $P(sample mean \ge \overline{X}) < \alpha$ Two-tailed test : $P(sample mean \ge \overline{X}) < \alpha/2$

• If this condition is met (write it down in the exam!) then we say :

We reject H_0 at α level of significance. "blah blah blah" is *probably* "blah blah blah".

One-tailed test : $P(sample mean \ge \overline{X}) < \alpha$ Two-tailed test : $P(sample mean \ge \overline{X}) < \alpha/2$

• If this condition is **NOT** met (write it down in the exam!) then we say : We do not reject H_0 at α level of significance. Inconclusive.

• If this condition is **NOT** met (write it down in the exam!) then we say : We do not reject H_0 at α level of significance. Inconclusive.

- For exam, you can ask me what conclusion is the question looking for.
- E.g. what does it mean for the vote to be "too close to call".
- There might be very precise questions asking you about the meaning of hypothesis testing in general. E.g. everything is probabilistic. Can always reject or not reject by picking the α .
- Will go through later in this lecture!

- H_0 : $\pi = 0.50$, H_A : $\pi \neq 0.50$, is male proportion greater than 0.50?
- Sample proportion p = 0.60, sample size n = 25.

- H_0 : $\pi = 0.50$, H_A : $\pi \neq 0.50$, is male proportion greater than 0.50?
- Sample proportion p = 0.60, sample size n = 25.

- Assuming null hypothesis is true, population proportion is $\pi = 0.50$.
- Applying Normal approximation to the binomial distribution, the sampling distribution is Normal with mean $\pi = 0.50$ and variance $\pi(1 \pi)/n$.

- H_0 : $\pi = 0.50$, H_A : $\pi \neq 0.50$, is male proportion greater than 0.50?
- Sample proportion p = 0.60, sample size n = 25.

- Assuming null hypothesis is true, population proportion is $\pi = 0.50$.
- Applying Normal approximation to the binomial distribution, the sampling distribution is Normal with mean $\pi = 0.50$ and variance $\pi(1 \pi)/n$.

• Z-statistic/value is
$$\frac{p-mean}{standard\ error} = \frac{p-\pi}{\sqrt{\frac{\pi(1-\pi)}{n}}} = \frac{0.1}{0.1} = 1.$$

- H_0 : $\pi = 0.50$, H_A : $\pi \neq 0.50$, is male proportion greater than 0.50?
- Sample proportion p = 0.60, sample size n = 25.

• Z-statistic/value is
$$\frac{p-mean}{standard\ error} = \frac{p-\pi}{\sqrt{\frac{\pi(1-\pi)}{n}}} = \frac{0.1}{0.1} = 1.$$

- (one-tailed) p-value is :
- $P(sample prop \ge 0.6) = P(Z \ge 1) = 1 P(Z < 1) = 1 0.8413 = 0.1587.$
- Rejecting null or not depends on your significance level.

- (one-tailed) p-value is :
- $P(sample prop \ge 0.6) = P(Z \ge 1) = 1 P(Z < 1) = 1 0.8413 = 0.1587.$
- Rejecting null or not depends on your significance level α .
- We are comparing areas : is $P(\text{ sample prop } \ge 0.6)$ less than $\alpha/2$?
- Suppose level of significance is $\alpha = 0.10$.
- Then, $P(\text{ sample prop } \ge 0.6) = 0.1587 > \frac{0.10}{2} = 0.05.$

• (one-tailed) p-value is :

 $P(sample prop \ge 0.6) = P(Z \ge 1) = 1 - P(Z < 1) = 1 - 0.8413 = 0.1587.$

- Suppose level of significance is $\alpha = 0.10$.
- Then, $P(\text{ sample prop } \ge 0.6) = 0.1587 > \frac{0.10}{2} = 0.05. \rightarrow \text{ write this in exam!!}$

• Conclusion : \rightarrow variation of exactly what you should write in exam. We do not reject the null, at the α level of significance. Results are inconclusive.

Chapter 12, Section 4 – Hypo. Test For Difference Between Means

• The general strategy :

z or
$$t = \frac{sample \ difference \ -hypothesized \ difference}{standard \ error}$$

- Use z when population variances are given. Sampling distribution is normal.
- Use *t* when population variances are not given. Sampling distribution is the *t*-dist.
- Df = (n-1) + (n-1) = 2(n-1).

Chapter 12, Section 4 – Hypo. Test For Difference Between Means

<u>Assumptions for the t-dist case</u>

- 1. Both populations are normally distributed with the same unknown variance.
- 2. Both simple random samples are independent and have same size *n*.

MSE =
$$\frac{S_1^2 + S_2^2}{2}$$

Standard Error, SE =
$$\sqrt{\frac{2 MSE}{n}} = \sqrt{\frac{S_1^2 + S_2^2}{n}}$$

Break time!! \o/

• No exercise today! Go enjoy your break. ^__^

• Circle is a timer that becomes blue. O_o (please ignore if it glitches) \rightarrow

12 minutes

p-value and Bayes Theorem

• (one-tailed) p-value = P(D = data or more extreme | H = null hypothesis is true)

• But
$$P(H | D) = \frac{P(D | H) P(H)}{P(D)}$$
.

• We can go further:
$$P(H \mid D) = \frac{P(D \mid H)P(H)}{P(D \mid H)P(H) + P(H \mid D)P(D)}$$
.

p-value and Bayes Theorem

• (one-tailed) p-value = P(D = data or more extreme | H = null hypothesis is true)

• But
$$P(H | D) = \frac{P(D | H) P(H)}{P(D)}$$
.

- So p-value is NOT the probability that the null hypothesis is true, which is P(H|D).
- Technically, we are using P(D | H) to "guess" whether P(H | D) would be small.
- $P(D \mid H)$ is probability of data given that null hypothesis is true.
- E.g. if two men committed the murder, what is prob. that DNA matches? \rightarrow HW₃

Chapter 11, Section 10 – Misconceptions

Extremely important for the exams. Might be in final exam. (うう)

- Is the p-value the probability that the null hypothesis is false/true?
- Does a low p-value indicate a large effect?

• If an outcome is not statistically significant, does it mean that the null hypothesis is true?

Psychology journal bans *P* values

Test for reliability of results 'too easy to pass', say editors.

Chris Woolston

26 February 2015 | Clarified: 09 March 2015

🖄 PDF 🔍 Rights & Permissions

A controversial statistical test has finally met its end, at least in one journal. Earlier this month, the editors of *Basic and Applied Social Psychology (BASP)* announced that the journal would no longer publish papers containing *P* values because the statistics were too often used to support lower-quality research¹.

Authors are still free to submit papers to *BASP* with *P* values and other statistical measures that form part of 'null hypothesis significance testing' (NHST), but the numbers will be removed before publication. Nerisa Dozo, a PhD student in psychology at the University of Queensland in Brisbane, Australia, tweeted:

NATURE | NEWS

< 🖶

< E

Statisticians issue warning over misuse of *P* values

Policy statement aims to halt missteps in the quest for certainty.

Monya Baker

07 March 2016

🖄 PDF 🛛 🔍 Rights & Permissions

Misuse of the P value — a common test for judging the strength of scientific evidence — is contributing to the number of research findings that cannot be reproduced, the American Statistical Association (ASA) warns in a statement released today¹. The group has taken the unusual step of issuing principles to guide use of the P value, which it says cannot determine whether a hypothesis is true or whether results are important.

P-values

Disclaimer

- P-values from different experiments are *not exactly* compatible.
- The experimental conditions have to be identical.
- Mathematically : sampling distribution will change depending on sample size, and stratified vs simple random sampling etc!
- But if experimental conditions are identical. We should see those distributions.

"The truth is never simple and rarely pure." – Oscar Wilde

p-value : lingo and conventions (not required for exam!)

• Officially, in mathematical statistics, the p-value is defined as the smallest significance level that will cause a rejection of the null.

• You might have also seen this general definition for a two-tailed p-value :

 $2 \cdot \min\{P(\text{ sample mean } \geq \overline{X}), P(\text{ sample mean } \leq -\overline{X})\}$

p-value : lingo and conventions (not required for exam!)

• You might have also seen this general definition for a two-tailed p-value :

2 · min{ $P(\text{ sample mean } \geq \overline{X}), P(\text{ sample mean } \leq -\overline{X})$ }

• Your textbook defines two versions of the p-value :

One-tailed p-value $P(sample mean \ge \overline{X})$ Two-tailed p-value $2 \cdot P(sample mean \ge \overline{X})$

• Your textbook's condition for a two-tailed test is :

 $2 \cdot P(\text{ sample mean } \geq \overline{X}) < \alpha$

p-value : lingo and conventions (not required for exam!)

- Textbook : Two-tailed p-value $2 \cdot P(sample mean \ge \overline{X})$
- Textbook's condition for a two-tailed test is :

 $2 \cdot P(\text{ sample mean } \geq \overline{X}) < \alpha$

• This is exactly the same as what we have been doing so far :

 $P(\text{ sample mean } \geq \overline{X}) < \alpha/2$

• Both full credit. If you already have $P(sample mean \ge \overline{X})$, no need to multiply it by 2.

Skipped Chapters

- Chapter 12, Section 6, Pairwise Comparisons (Tukey HSD test),
- Chapter 12, Section 7, Specific Comparisons,
- Chapter 12, Section 8, Correlated Pairs
- Chapter 12, Section 11, Pairwise (Correlated) (Bonferroni correction),

• are not required!

 \rightarrow Syllabus on the website has been updated.