Math 10 - Exercises for Lecture 5

1. Given 4 dice rolls, write down an expression for the probability that at least two rolls have the same outcome. You do not have to simplify your answer.
2. Given 7 dice rolls, what is the probability that none of the rolls had the same outcome? (in mathematics, this is known as the pigeonhole principle)

Recall that for the Binomial Distribution, the probability of getting k successes in n trials is ${ }^{n} C_{k} p^{k}(1-p)^{n-k}$, where ${ }^{n} C_{k}=\frac{n!}{k!(n-k)!}$.
3. Suppose the probability of being admitted to a college is 0.50 for every student who applies. If 3 students applied, what is the probability that 0 or 2 students got admitted? Give a simplified numerical answer and show your work.
4. If instead, the probability of being admitted is 0.30 and 10 students applied, write down a numerical expression for the probability that betwee 1 and 3 students got admitted. You do not have to simplify your answer.
5. Suppose there are two candidates running for president, Mr T and Mrs H. There are only 1000 voters. 400 of them voted for Mrs H , while 600 of them voted for Mr T.

Suppose you took a simple random sample of size 100 from these 1000 voters. Write down a numerical expression of the probability that 35 in your sample voted for Mr T . You do not have to simplify your answer.
6. (Very tough) Roll 2 dice. What is the probability that the larger outcome, or both outcomes in the case of a tie, is/are exactly equal to x, where x is one of the six possible outcomes of a die roll? Your answer will be in terms of x.

Answers

1) $1-\frac{5}{6} \cdot \frac{4}{6} \cdot \frac{3}{6}$.
2) 6 possible outcomes, 7 dice. So, the probability is zero.
3) $P(0$ success in 3 trials $)+P(2$ success in 3 trials $)=\frac{1}{8}+\frac{3}{8}=\frac{1}{2}$.
4) ${ }^{10} C_{1}(0.3)^{1}(0.7)^{9}+{ }^{10} C_{2}(0.3)^{2}(0.7)^{8}+{ }^{10} C_{3}(0.3)^{3}(0.7)^{7}$
5) ${ }^{100} C_{35}(0.6)^{35}(0.4)^{65}$
6) $P(\operatorname{larger} \leq(x-1))=\frac{(x-1)}{6} \cdot \frac{(x-1)}{6}=\frac{(x-1)^{2}}{36}$.
$P($ larger $=x)=P($ larger $\leq x)-P($ larger $\leq(x-1))=\frac{x^{2}}{36}-\frac{(x-1)^{2}}{36}$.
