Math 10 - Exercises for Lecture 1

Summation Notation Practice

$$X_1 = 1, \quad X_2 = 2, \quad X_3 = 3, \quad X_4 = 4, \quad X_5 = 5$$

1. Calculate $\sum_{i=1}^{5} X_i$.

2. Calculate
$$\sum_{i=1}^{3} X_i$$
.

3. Calculate
$$\sum_{i=1}^{3} X_i^2$$
.

4. Calculate
$$\left(\sum_{i=1}^{2} X_{i}\right)^{2}$$
.

5. Calculate
$$\left(\sum_{i=1}^{2} X_{i}^{2}\right)^{2}$$
.

$$Y_1 = 1, \quad Y_2 = 2$$

6. Calculate
$$\sum_{i=1}^{2} X_i Y_i$$
.

7. Calculate
$$\sum_{i=1}^{2} X_i^2 Y_i$$
.

Linear Transformation Practice

 $X_1 = 1, X_2 = 2, X_3 = 3, X_4 = 4, X_5 = 5$

8. Calculate Z_1 and Z_2 , where $Z_i = 2X_i + 1$.

9. Is $Z_i = 5X_i^2 - 7$ a linear transformation of the X_i s?

10. If you plotted $Z_i = 10X_i - 2$ with Z_i on the vertical axis and X_i on the horizontal axis, then connect all the points with an infinitely long line, where would the vertical intercept be?

Logarithm Practice

11. What is the value of $\log_{10}(10000)$?

12. What is the value of $\log_2(16)$?

13. What is the value of $\log_3(27)$?

 $W_1 = 4, \ W_2 = 16, \ W_3 = 64, \ W_4 = 256$

14. If you plotted the value of W_i on the vertical axis and corresponding *i* on the horizontal axis, would you be able to connect the resulting (i, W_i) points with a line? (note: "lines" in mathematics are always straight, unless specified otherwise)

15. Calculate $U_i = \log_4(W_i)$ for i = 1, 2, 3, 4.

16. If you plotted the value of U_i on the vertical axis and corresponding *i* on the horizontal axis, would you be able to connect the resulting (i, U_i) points with a line?

17. Is $U_i = \log_4(W_i)$ a linear transformation of the W_i s?

Answers

 $\begin{array}{c} 1) \ 15 \\ 2) \ 6 \\ 3) \ 14 \\ 4) \ 9 \\ 5) \ 25 \\ 6) \ 5 \\ 7) \ 9 \\ 8) \ 3, \ 5 \\ 9) \ No \\ 10) \ -2 \\ 11) \ 4 \\ 12) \ 4 \\ 13) \ 3 \\ 14) \ No \\ 15) \ 1, \ 2, \ 3, \ 4 \\ 16) \ Yes \\ 17) \ No \end{array}$