Homework 1 Solutions

by the esteemed Asa Levi

p50 \# 2 (10 pts)
Histogram

Part c
There are more people age 0-4.
Part d
The percentage of people age 35 and over is around 50
p74 \# 1 (10 pts)
Part a
The average of the list is:

$$
\begin{gathered}
\text { average }=\frac{41+48+50+50+54+57}{6} \\
=\frac{300}{6} \\
=50
\end{gathered}
$$

The standard deviation is the root mean square of the list $\{-9,-2,0,0,4,7\}$, which is obtained by subtracting the average from each element in the previous list. So we get:

$$
\begin{aligned}
& \sqrt{\frac{9^{2}+(-2)^{2}+0^{2}+0^{2}+4^{2}+7^{2}}{6}}=\sqrt{\frac{81+4+16+49}{6}} \\
&=\sqrt{\frac{150}{6}} \\
&=\sqrt{25} \\
&=5
\end{aligned}
$$

Part b

0.5 SDs is 2.5 , so we just pick which elements are within 2.5 of 50 . These are 48,50 and 50 . 1.5 SDs is 7.5 , and $48,50,50,54$ and 57 are within 7.5 of 50 .

p75 \# 7 (10 pts)

Part a

This question has nothing to do with statistics, just arithmetic. The average wieght for men is 66 kg with an SD of $9 \mathrm{~kg} .1 \mathrm{~kg}=2.2 \mathrm{lbs}$, so the average weight for men is $66^{*} 2.2=145.2 \mathrm{lbs}$ with an SD of $9^{*} 2.2=19.8 \mathrm{lbs}$. Similarly women have an average weight of 121 lbs with an SD of 19.8 lbs .

Part b

To estimate the percentage we will approximate the data by the normal distribution and use a z-table. First, we need to get our range in standard units. $57 \mathrm{~kg}=66 \mathrm{~kg}-9 \mathrm{~kg}=-1 \mathrm{SU}$, Similarly 75 kg is 1 SU . So we need to look for the area in the line $z=1$ in the z-table in the back of the book, which gives us 68.27%. Thus 68.27% of men weighed between 57 and 75 kg .

Part c

If you took the men and women together the SD of their weights would be bigger than 9 kg . The SD would go up because the spread of the histogram would increase; individually the men's histogram had a peak at 66 kg , while the women's had a peak at 55 kg . But when you combine these it looks more like a flat plateau between 55 kg and 66 kg . This flatness means that the data has spread out, and is now less concentrated around the mean. Thus the SD will increase.

p94 \# 3 (10 pts)

Part a

First we need to figure out what 700 is in standard units. To do this we compute $\frac{700-543}{110} \approx 1.42$. Now we look at a z-table and find that for $z=1.40 \approx 1.42$ the area is about 83.85%. If we take half of this area plus half of the total area under the graph this will be the percentage of students who scored less than 700. This is 91.925%. Then the students who scored more than 700 are $100 \%-91.925 \%=8.075 \%$.

Part b

Using the same approach as in (a) you get that 3.595% of students scored above 700 .

p95 \# 6 (8 pts)

No. 178 is only 1 SD above 169, and there are 0% of people above 1 SD away from the average. In the normal curve about 16% of people are more than 1 SD above the average, so this data doesn't follow the normal curve.

p95 \# 8 (12 pts)

Part a

True. If your list is $\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}$ then the average is $\frac{x_{1}+x_{2}+x_{3}+\ldots+x_{n}}{n}$. After adding 7 to each entry the list would be $\left\{x_{1}+7, x_{2}+7, x_{3}+7, \ldots, x_{n}+7\right\}$ and the average would be:

$$
\begin{aligned}
\frac{x_{1}+7+x_{2}+7+x_{3}+7+\ldots+x_{n}+7}{n} & =\frac{x_{1}+x_{2}+x_{3}+\ldots+x_{n}+7 n}{n} \\
& =\frac{x_{1}+x_{2}+x_{3}+\ldots+x_{n}}{n}+\frac{7 n}{n} \\
& =\frac{x_{1}+x_{2}+x_{3}+\ldots+x_{n}}{n}+7
\end{aligned}
$$

Which is your previous average plus 7 .

Part b

False. Consider the list $\{-1,1\}$. The SD of this list is 1 . Now, consider the list $\{-1+7,1+7\}=\{6,8\}$. The average of this new list is 7 , so the SD is the RMS of the list $\{6-7,8-7\}=\{-1,1\}$, which is also 1 .

Part c

True. If your list is $\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}$ then the average is $\frac{x_{1}+x_{2}+x_{3}+\ldots+x_{n}}{n}$. After doubling each entry the list would be $\left\{2 x_{1}, 2 x_{2}, 2 x_{3}, \ldots, 2 x_{n}\right\}$ and the average would be:

$$
\begin{aligned}
\frac{2 x_{1}+2 x_{2}+2 x_{3}+\ldots+2 x_{n}}{n} & =\frac{2\left(x_{1}+x_{2}+x_{3}+\ldots+x_{n}\right)}{n} \\
& =2 \frac{x_{1}+x_{2}+x_{3}+\ldots+x_{n}}{n}
\end{aligned}
$$

Which is twice your previous average.

Part d

True. Let your list be $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and the average be M. Then if you double each entry in the list you have $\left\{2 x_{1}, 2 x_{2}, \ldots, 2 x_{n}\right\}$ with average $2 M$. The SD of the first list is $\sqrt{\frac{\left(x_{1}-M\right)^{2}+\left(x_{2}-M\right)^{2}+\ldots+\left(x_{n}-M\right)^{2}}{n}}$. The SD of the second list is:

$$
\begin{aligned}
\sqrt{\frac{\left(2 x_{1}-2 M\right)^{2}+\left(2 x_{2}-2 M\right)^{2}+\ldots+\left(2 x_{n}-2 M\right)^{2}}{n}} & =\sqrt{\frac{4\left(\left(x_{1}-M\right)^{2}+\left(x_{2}-M\right)^{2}+\ldots+\left(x_{n}-M\right)^{2}\right)}{n}} \\
& =2 \sqrt{\frac{\left(x_{1}-M\right)^{2}+\left(x_{2}-M\right)^{2}+\ldots+\left(x_{n}-M\right)^{2}}{n}}
\end{aligned}
$$

Which is twice the SD of the first list.

Part e

True. If your list is $\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}$ then the average is $\frac{x_{1}+x_{2}+x_{3}+\ldots+x_{n}}{n}$. After negating each entry the list would be $\left\{-x_{1},-x_{2},-x_{3}, \ldots,-x_{n}\right\}$ and the average would be:

$$
\begin{aligned}
\frac{-x_{1}-x_{2}-x_{3}+\ldots-x_{n}}{n} & =\frac{-\left(x_{1}+x_{2}+x_{3}+\ldots+x_{n}\right)}{n} \\
& =-\frac{x_{1}+x_{2}+x_{3}+\ldots+x_{n}}{n}
\end{aligned}
$$

Which is the opposite of your previous average.

Part f

False. The SD is always positive, but to see this easily you can consider the list $\{-1,1\}$. It has SD 1 , and when you change the sign of each entry you get the list $\{1,-1\}$, which also has SD 1.

p95 \# 9 (10 pts)

Part a

False. For example take the list $\{1,1,100\}$. Its median is 1 , while its average is 34 . I'd say 1 and 34 aren't close together.

Part b

False. For example consider the list $\{2,50,50\}$. Its average is 34 , and only a third of the list is less than 34 .

Part c

False. The income histogram we discussed in class has a long right tail, and does not follow the normal distribution. There are many other examples of data sets that don't follow the normal distibution as well.

Part d

False. Consider the two lists $L_{1}=\{40,60\}$ and $L_{2}=\{50-10 \sqrt{2}, 50,50,50+10 \sqrt{2}\}$. They both have average 50 and SD 10, but in L_{1} all of the list is between 40 and 60 , while in L_{2} only half of the list is.

Worksheet Q1 (10 pts)

Part a

Average age of husband: 48.18

Part b

Average age of wife: 45.59

Part c

Median income of husband: 27333

Part d

Median total household income: 41151

Part e

Maximum total household income: 449996

Worksheet Q2 (10 pts)

Worksheet Q3 (10 pts)

It sure looks like a normal curve, but by all metrics it fails to behave like one. Here are a few examples:

- Over 80% of the age differences are within 1 SD from the average
- The histogram is not centered about the line $x=0$ in standard units.
- About 70% of the area in the histogram is to the right of 0 .

