Math 108. Topics in Combinatorics. Problem Set 4. Due on Thursday, 11/10/16.

1. How many SYT of shape $\left(n^{n}\right)$ have main diagonal $\left(1,4,9,16, \ldots, n^{2}\right)$?
2. Let $f^{\lambda / 2}$ denote the number of SYT of shape λ having the entry 2 in the first row. Evaluate the sums

$$
\sum_{\lambda \vdash n} f^{\lambda / 2} f^{\lambda} \quad \text { and } \quad \sum_{\lambda \vdash n}\left(f^{\lambda / 2}\right)^{2} \text {. }
$$

3. Consider a hexagon with equal angles and integer side lengths given counter-clockwise by r, s, t, r, s, t. How many equilateral rhombi (consisting of two equilateral triangles of side 1) are needed to tile the hexagon?
4. Let Γ be a region on a square grid, and let τ be a tiling of Γ by dominoes.
(a) Prove that the parity of the number of vertical dominoes in τ only depends on Γ, not on the particular tiling τ.
(b) Prove that if Γ is simply connected (it has no "holes"), then every two tilings τ and τ^{\prime} are connected by a series of 2×2 flips (one such flip switches two adjacent vertical dominoes with two horizontal ones).
5. $\left(^{*}\right)$ Let $f(n)$ be the number of partitions of $2 n$ whose Young diagram can be tiled with n dominoes. For instance, $(4,3,3,3,1)$ is such a partition. Prove that $f(n)$ is equal to the number of ordered pairs (λ, μ) of partitions satisfying $|\lambda|+|\mu|=n$.
