Math 108. Topics in Combinatorics. Problem Set 3. Due on Thursday, 10/27/16.

1. Fix $t \geq 0$. Show that $p_{n-t}(n)$ becomes eventually constant as $n \rightarrow \infty$. What is this constant c_{t} ? What is the least value of n for which $p_{n-t}(n)=c_{t}$?
2. Prove that

$$
\prod_{i \geq 0}\left(1+q^{2 i+1}\right)=\sum_{k \geq 0} \frac{q^{k^{2}}}{\left(1-q^{2}\right) \cdots\left(1-q^{2 k}\right)},
$$

3. Prove the following statements:
(a) The number of partitions of n into parts congruent to $\pm 1 \bmod 3$ equals the number of partitions of n where every part appears at most twice.
(b) The number of partitions of n into parts congruent to $\pm 1 \bmod 6$ equals the number of partitions of n into distinct parts congruent to $\pm 1 \bmod 3$.
4. Let $f(n)$ (respectively, $g(n)$) be the number of partitions $\lambda \vdash n$ into distinct parts, such that the largest part λ_{1} is even (respectively, odd). Prove that

$$
f(n)-g(n)= \begin{cases}1, & \text { if } n=k(3 k+1) / 2 \text { for some } k \geq 0 \\ -1, & \text { if } n=k(3 k-1) / 2 \text { for some } k \geq 1 \\ 0, & \text { otherwise }\end{cases}
$$

5. Let M be a random $n \times n$ matrix with entries in the finite field \mathbb{F}_{q}, where each entry is chosen uniformly and independently at random. Show that with probability at least $1 / 4$, M is non-singular (i.e., it has nonzero determinant).
Hint: The generating function for pentagonal numbers may be surprisingly useful here.
6. Find a bijective proof (using a Franklin-type involution, like in the proof of Euler's Pentagonal Theorem) of Jacobi's identity in the form:

$$
\prod_{n=1}^{\infty}\left(1-x^{n} y^{n-1}\right)\left(1-x^{n-1} y^{n}\right)\left(1-x^{n} y^{n}\right)=1+\sum_{n=1}^{\infty}(-1)^{n}\left(x^{\frac{n(n+1)}{2}} y^{\frac{n(n-1)}{2}}+x^{\frac{n(n-1)}{2}} y^{\frac{n(n+1)}{2}}\right) .
$$

