Math 108. Topics in Combinatorics. Problem Set 2. Due on Thursday, 10/13/16.

1. Find a closed formula for the sum

$$
\sum_{\pi \in S_{n}} \operatorname{maj}(\pi)
$$

2. Let $P_{n, k}$ be the 'slice' of the n-dimensional cube $0 \leq x_{i} \leq 1, i=1, \ldots, n$, between the hyperplanes $\sum_{i=1}^{n} x_{i}=k$ and $\sum_{i=1}^{n} x_{i}=k+1$. Prove that

$$
n!\operatorname{Vol}\left(P_{n, k}\right)=\#\left\{\pi \in S_{n}: \pi \text { has } k \text { descents }\right\} .
$$

3. Recall Sylvester's map $\lambda \mapsto \mu$ defined in class (or see [EC1, Prop. 1.8.5, third proof]), where λ is a partition into odd parts.
(a) Prove that the image μ is a partition into distinct parts.
(b) Prove that Sylvester's map is a bijection between partitions of n into odd parts and partitions of n into distinct parts.
(c) (Bonus) Prove that the number of different parts in λ equals the number of blocks of consecutive parts in μ. For example, $\lambda=(9,9,7,3,3)$ has three different parts, and $\mu=(9,8,7,4,2,1)$ has three blocks, namely block $9,8,7$, block 4 , and block 2,1 .
4. Recall that $p(n)$ denotes the number of partitions of n. Prove that the number of pairs (λ, μ) where $\lambda \vdash n, \mu \vdash n+1$, and the Young diagram of μ is obtained from that of λ by adding one square, is equal to $p(0)+p(1)+\cdots+p(n)$.
5. Prove that the number of partitions of n into 4 parts equals the number of partitions of $3 n$ into 4 parts of size at most $n-1$.
6. Let $\quad e(n)=\#$ of partitions of n with an even number of even parts, $o(n)=\#$ of partitions of n with an odd number of even parts.
Show that $e(n)-o(n)=\#$ of self-conjugate partitions of n. Recall that λ is self-conjugate if $\lambda=\lambda^{\prime}$.
