Math 108. Topics in Combinatorics. Problem Set 2. Due on Thursday, 10/13/16.

1. Find a closed formula for the sum

$$\sum_{\pi \in S_n} \operatorname{maj}(\pi).$$

2. Let $P_{n,k}$ be the 'slice' of the *n*-dimensional cube $0 \le x_i \le 1, i = 1, ..., n$, between the hyperplanes $\sum_{i=1}^{n} x_i = k$ and $\sum_{i=1}^{n} x_i = k + 1$. Prove that

$$n! \operatorname{Vol}(P_{n,k}) = \#\{\pi \in S_n : \pi \text{ has } k \text{ descents}\}.$$

- 3. Recall Sylvester's map $\lambda \mapsto \mu$ defined in class (or see [EC1, Prop. 1.8.5, third proof]), where λ is a partition into odd parts.
 - (a) Prove that the image μ is a partition into distinct parts.
 - (b) Prove that Sylvester's map is a bijection between partitions of n into odd parts and partitions of n into distinct parts.
 - (c) (Bonus) Prove that the number of different parts in λ equals the number of blocks of consecutive parts in μ . For example, $\lambda = (9, 9, 7, 3, 3)$ has three different parts, and $\mu = (9, 8, 7, 4, 2, 1)$ has three blocks, namely block 9, 8, 7, block 4, and block 2, 1.
- 4. Recall that p(n) denotes the number of partitions of n. Prove that the number of pairs (λ, μ) where $\lambda \vdash n, \mu \vdash n+1$, and the Young diagram of μ is obtained from that of λ by adding one square, is equal to $p(0) + p(1) + \cdots + p(n)$.
- 5. Prove that the number of partitions of n into 4 parts equals the number of partitions of 3n into 4 parts of size at most n-1.
- 6. Let e(n) = # of partitions of n with an even number of even parts, o(n) = # of partitions of n with an odd number of even parts. Show that e(n) - o(n) = # of self-conjugate partitions of n. Recall that λ is self-conjugate if λ = λ'.