Math 108. Topics in Combinatorics. Problem Set 1. Due on Thursday, 9/29/16.

1. Let $\pi \in \mathcal{S}_{n}$ be random (chosen from the uniform distribution). Fix $1 \leq k \leq n$. What is the probability that in the disjoint cycle decomposition of π, the length of the cycle containing 1 is k ?
2. At the colloquium talk on $9 / 15 / 2016$, Oleg Viro mentioned that "every permutation can be written as a product of two involutions." Prove it. (Recall that an involution is a permutation that equals its inverse.)
3. Let $A_{d}(x)$ denote the d th Eulerian polynomial. Show that every zero of $A_{d}(x)$ is real. Hint: Recall the formula proved in class relating $A_{d+1}(x), A_{d}^{\prime}(x)$ and $A_{d}(x)$.
4. Using only combinatorial arguments and the definitions of $\sec x$ and $\tan x$ in terms of Euler numbers, prove that

$$
\frac{d}{d x} \sec ^{2} x=2 \sec ^{2} x \tan x .
$$

5. A cycle in a permutation is said to be up-down if, when written with its smallest element first, say $\left(b_{1}, b_{2}, \ldots\right)$, we have that $b_{1}<b_{2}>b_{3}<\ldots$. Let Δ_{n} denote the set of permutations of $[n]$ that can be written as a product of up-down cycles. For example, $(1,5,2,7)(3)(4,8,6)(9) \in$ Δ_{9}, but $(1,3,5)(2,4)(6) \notin \Delta_{6}$. Prove that

$$
\left|\Delta_{n}\right|=E_{n+1} .
$$

6. Let $k<n / 2$. Find a bijection f from the set of k-element subsets of $[n]$ to the set of $(n-k)$ element subsets of [n] with the property that for every k-element subset $S, S \subseteq f(S)$.
