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13.1 Stochastic Differential Equations

d d
u—a(t,u)—i——w

e g s smooth (1)

where w(w, t) is Brownian motion.

>
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One type of random systems; other random forcing terms are
available.

Given u(0), an initial value, what does this equation mean?

‘L—Vt" is defined in the distribution sense, i.e.,
t:
t12 dw = W(tz) — W(tl).

Forany tp > t; >0
u(ts) — u(ty) = /ttz a(t, u(£))dt + w(ts) — w(ty).

Note that w(t,) — w(ty) is a Gaussian variable with mean
zero and variance ty — tj.



13.1 Stochastic Differential Equations

The following formulation is equivalent to Eq (1)

du = a(t, u)dt + dw (2)

dw .

Example. v : velocity, a : deterministic force, S

noise) force.

random (white

» If a=0, du = dw, that is, u is Brownian motion.
» For a small Kk >0,

| u((n+1)k) = u(nk) + a(nk, u(nk))k + w(k) | (3)

where w(k) ~ N(0, k). This is the Euler-Maruyama method.



13.2 Stochastic Integration

More general class of SDE is
du = a(t, u(t))dt + b(t, u(t))dw (4)

The meaning of the above SDE is

to %)
u(ts) — u(tr) = / a(t, u(t))dt +/ b(t, u(t))dw

t 51
for any t, > t; > 0. The first integral is well-defined. However, the
second integral is not clear.
Note. [ u(t)dW and [ u(t)dw are different. The first one is an
integration W|th respect to the Wiener measure, that is, it
considers all possible Brownian paths, while the second one is an
integration with respect to one Brownian motion.



13.2 Stochastic Integration

» The stochastic integral is defined as

¢ m—1
/0 b(s,u(s))dw = lim " b{w(ti1 — w(t)}
i=0

sup [tjp1—ti|—0

where {t;} is a partition of [0, t], i.e.,
O=th<tfh<---<ty,="t.
» There are several methods for stochastic integration
depending on how to choose b;
1. lto integral: b; = b(t;, u(t;))
2. Stratonovich integral: b; = (b(t;, u(t;) + b(tir1, u(tis1))



13.2 Stochastic Integration

t
Example. Calculate/ wdw.
0



13.2 Stochastic Integration
t
Example. Calculate wdw.

0
Heuristic explanation. First guess (assuming that w is a

deterministic bounded variation function) is 2w?(t).

» Using lto integral,

m—1

/0 wdw ~ Z w(ti) (w(tiv1) — w(ti))

i=0

Thus, E[f;, wdw] = 0 and it is natural to guess

. t 1, 1
Ito integral: wdw = —w*(t) — = t.
0 2 2




13.2 Stochastic Integration
t
Example. Calculate wdw.

0
Heuristic explanation. First guess (assuming that w is a
deterministic bounded variation function) is 2w?(t).
» Using Stratonovich integral,

m—1

| w37 3 (wti0) + ) (w(tr0) = i)

i=0

(WA (1) — w(5)) = 2w(1)

Thus, E[f; wdw] = 3t and it is natural to guess

t
1
Stratonovich integral: / wdw = §W2(t).
0




13.3 Fokker-Planck Equations

Definition. A stochastic process u(w, t),t € R or RT is called
Markov process if

Elu(w, t)|u(w,s),s < t] = E[u(w, t')|u(w, t)]

» By construction, the solution to the SDE is a Markov process.
» Let p(x, t) be the probability density of u(w, t) at time t, that

is,
Pr(x < u(t) < x + dx) = p(x, t)dx

» Chapman-Kolmogorov equation

p(x, t + k) = / p(x + y, ) (x, v, K)dy

where 1) is the transition probability that the value of u
changes from x + y at time t to x at time t + k.



13.3 Fokker-Planck Equations

For our discussion, we will consider the Langevin equation (or
Ornstein-Uhlenbeck equation)

du = —audt +dw, a>0 (5)

We want to derive an equation satisfied by p(x, t) called
Fokker-Planck equation (or Kolmogorov equation).

» For a small k > 0 and u” = u(nk) with ak < 1,
un+1 —u" = —aku” + Wn—|—1 —w"

» u"tl — " + aku™ is Gaussian with mean zero and variance k

. (x — u™ + aku")?
X —
P 2K

Pr(x < u"™™ < x+dx) =

1
\V2rk



13.3 Fokker-Planck Equations

» Using a notation u” = x +y,

00 _ ak(x 2
p(x, t—l—k):/_ p(x+y, t)rexp <—( Y+ 12(/(< td) )dy

> After rearranging the exponent,

p(x, t+k) :/_ p(x+y, t)\/217TkeXp (_((1 ak;); akx) >dy

» Expand p(x + y, t) around x,

3

2
y y
p(X+y) t) = p(X7 t)+pr(X7 t)+7pXX(X7 t)+€pXXX(Xa t)+(/)(y4)



13.3 Fokker-Planck Equations

—a — akx)2
> k= [ p(Xt)Fexp< W%’y

_ _ X2
> /2—f ypx(x, t)\/—exp( %) dy

> —a —akx)?
> k= f—oo 5 pxx(X t)\/—exp< W) dy
> l4:foooo 5Pxxx(X t)\/—exp< W) dy
» For z = (1 — ak)y, h becomes

o plot) [ g (2T
PP —Oo\/m P 2k 1 — ak

px,t) [* 1 (z — akx)?
- - d
1 ak /oo 2k T < 2k z

p(x, t)

= T = Pl D) (1Hak+O(K) = | p(x, t)(L + ak) + O(K)




13.3 Fokker-Planck Equations

» For the same change of variable,

ol t)/oo z 1 (z — akx)? dz
PN | T Tk ok P 2K 1— ak

o px(x,t)
~ (1 - ak)?

akx = px(x, t)(1 + 2ak + O(k?))akx

= | pe(x, t)akx + O(k?)

» Similarly,
z—akx)?
£) / o0 (-CFE) &
= Pxx X
h=p 21— ak Vork 11— ak
B k+ (akx)? k )




13.3 Fokker-Planck Equations

> Also,
z—akx)?
L — ( t)/oo 73 exp(—( 2k)) dz
47 PooO ) | 61— ak)? onk  1- ak
(3axk? + (akx)?)

= Pox( g

= | prox (X, t)(’)(kz)

» Finally, using /1, b, I3 and I, we have

k
p(x, t+k) = p(x,t) = p(x, t)ak+px(x, t)akx—i—prx(x, t)+O(k?)

t—+ k) — t
B CIERY GO

1
= p(x, t)a+px(x, t)ax—i—apxx(x7 t)+0(k)



13.3 Fokker-Planck Equations

After taking k — 0, we have that the Fokker-Planck equation of
the Langevin equation

du = —audt + dw

P, 1) = Bu(@xp(x, 1) + 3puclx, 1)




13.3 Fokker-Planck Equations

After taking k — 0, we have that the Fokker-Planck equation of
the Langevin equation

du = —audt + dw

P, 1) = Bu(@xp(x, 1) + 3puclx, 1)

Exercise. Derive the Fokker-Planck equation of the following
differential equations

1. du = —audt + odw

2. du = —audt




13.3 Fokker-Planck Equations

Example. Random walk with killing
» Let U(x,t) be a smooth function of x and t and 0 < U < A.
» Choose k > 0 so that 1 — kA > 0.
» Let 1) be the standard random walk, i.e.,

n:{ h w/1)2

—h otherwise
» Let u” be a random walk such that u(0) = 0 and

L u" 4+ n with probability 1 — kU(u", t)
~ ] killed otherwise

Then

p(x; t+k) = /OO p(x+y, t)(1—kU(x+y, t))M

d
—00 V 27Tk y



13.3 Fokker-Planck Equations

Example. Random walk with killing

> Let | = ffooo p(x+y,t )%dy then using similar

calculations as before, we have

k
—pex + O(K?)

<ol —y2
> For b= [T p(x+y,t)U(x+y, t)%dy, we have

b = U(x, t)p(x, t) + O(k?).

» Thus,

K b, £) — kU(x, )p(x, ) + O(K?)

plx, t 4+ K) = p(x,t) +

1

5P — U(x, t)p(x, t)

= | Pt =




Homework

1. Let v € R be Brownian motion

du = dw.

1.1 Using the Monte Carlo simulation, estimate the density of u at
t = 1. Use the Euler-Maruyama scheme to solve the SDE.

1.2 For the same SDE, restrict u to be in [—1,1]. That is, if uis
not in [—1,1], it is removed. Calculate the probability to reach
t = 0.5 without being removed.

2. Let u € R be a stochastic process

1 1
du = —Eu(l — u?)dt + Edw.

2.1 Estimate the density of u at t = 1 when the initial density is
5(x).
2.2 Estimate the density of u at t = 1 when the initial density is
Gaussian with mean —0.1 and variance 0.1%.
3. Derive the Fokker-Planck equation of du = —adt + dw,u € R
for a constant a.



