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11.1 Density estimation using orthogonal functions

I Let X1,X2, ...,Xn be IID observations from a distribution on
[0, 1] with density f . If we assume that f ∈ L2, we can write

f (x) =
∞∑
j=0

βjφj(x)

where {φj} is an orthonormal basis of L2[0, 1].

I If we know f (x), the coefficient βj is given by

βj =

∫
[0,1]

f (x)φj(x)dx .

I The above formula looks similar to the Kernel density
estimation. But the basis function φj(x) does not necessarily
have measure 1 in contrast to the Kernel.

I Without knowing f (x), how can we calculate the coefficient
βj? We need to estimate it using the data.



11.1 Density estimation using orthogonal functions

I The estimate β̂j of βj is given by

β̂j =
1

n

n∑
i

φj(xi )

Theorem. The mean and variance of β̂j are

E [β̂j ] = βj , Var(β̂j) =
σ2j
n

where σ2j = Var(φj(Xi )) =
∫

(φj(x)− βj)2f (x)dx .
Proof.

E [β̂j ] =
1

n

n∑
i

E [φj(Xi )] = E [φj(X1)) =

∫
φj(x)f (x)dx = βj .
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∫
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Exercise. Prove the variance.



11.1 Density estimation using orthogonal functions

I For a given f (x), we know that

J∑
j

βjφj(x) (1)

is more accurate if J ∈ N increases.

I This is not true anymore with the estimates {β̂j}.
Think about the regression. A higher order polynomial
regression function is not always better than a lower order
polynomial regression function (bias and variance tradeoff).

I J is called the smoothing parameter. It is typically chosen
between 1 and

√
n where n is the sample size. J is chosen so

that it minimizes the risk (or mean integrated squared
error).



11.1 Density estimation using orthogonal functions

Let f̂ (x) is an estimate of f (x) given by

f̂ (x) =
J∑
j

β̂jφj(x).

Remember that the risk of f̂ using a smoothing parameter J is the
expected value of the L2 error, that is

R(J) = E

[∫
(f̂ (x)− f (x))2dx

]
=

J∑
j=1

σ2j
n

+
∞∑

j=J+1

β2j .



11.1 Density estimation using orthogonal functions

Theorem. An estimate of the risk R(J) is

R̂(J) =
J∑

j=1

σ̂2j
n

+
∞∑

j=J+1

(
β̂2j −

σ̂2j
n

)
+

where a+ = max{a, 0} and

â2j =
1

n − 1

n∑
i

(
φj(Xi )− β̂j

)2
.

I Using the J∗ that minimizes R̂(J), the estimate of the density
f̂ (x) is given by

f̂ (x) =
J∗∑
j

β̂jφj(x)

I Note that f̂ (x) can be negative!! If so, take f̂ ∗ = max(f̂ , 0)
and normalize it.



11.2 Regression

For a data set {Xi ,Yi},
I Remember that the regression function r(x) is defined as the

expected value of Y given x

r(x) = E [Y |X = x ].

I We studied parametric and nonparametric regressions. In
particular, for nonparametric regression, we know a kernel
density estimation based regression method.

I It is also possible to calculate a regression function using
density estimation with orthogonal functions.

I Assume that r(x) is in L2(0, 1) and xi is uniformly distributed.

I r(x) =
∑∞

j=1 βjφj(x) where βj =
∫ 1
0 r(x)φj(x)dx for an

orthonormal basis {φj} of L2(0, 1).



11.2 Regression

I The estimate of βj , β̂j is given by

β̂j =
1

n

n∑
i=1

Yiφj(xi ), j = 1, 2, ...

Theorem.

β̂j ∼ N(βj ,
σ2

n
)

where σ2 is the variance of the measurement error ei

Yi = r(xi ) + ei

Idea of Proof. For the mean,

E [β̂j ] =
1

n

n∑
i=1

E [Yi ]φj(xi ) =
1

n

n∑
i=1

r(xi )φj(xi )

∼
∫

r(x)φj(x)dx = βj .



11.3 Wavelets

I Suppose that a regression function r(x) has a sharp jump but
that r(x) is otherwise very smooth. That is, r(x) is spatially
inhomogeneous.

I Doppler function
√

x(1− x) sin
(

2.1π
x+.05

)



11.3 Wavelets

Wavelets are local orthogonal functions.
Harr wavelet.

I Harr father wavelet (or Harr scaling function)

φ(x) =

{
1 if 0 ≤ x < 1
0 otherwise.

I Haar mother wavelet

ψ(x) =

{
−1 if 0 ≤ x ≤ 1/2
1 if 1/2 < x ≤ 1

I For any integers j and k define

ψj ,k(x) = 2j/2ψ(2jx − k).

I Let Wj = {ψjk , k = 1, 2, ..., 2j − 1} be the set of rescaled and
shifted mother wavelets at resolution j .



11.3 Wavelets

Theorem. The set of functions

{φ,W0,W1, ...}

is an orthonormal basis for L2(0, 1).
Corollary. For any f ∈ L2(0, 1),

f (x) = αφ(x) +
∞∑
j

2j−1∑
k=0

βj ,kψj ,k(x)

where α =
∫ 1
0 f (x)φ(x)dx , βj ,k =

∫ 1
0 f (x)ψj ,k(x)dx .

I α is called scaling coefficient.
I βj ,k are called detail coefficients.
I In a finite sum approximation of f using J different scales

f (x) = αφ(x) +
J∑
j

2j−1∑
k=0

βj ,kψj ,k(x)

J represents the resolution of the approximation.



11.3 Wavelets

Regression.

I Consider the regression model Yi = r(xi ) + σei where
e ∼ N(0, 1) and xi = i/n.

I For simplicity, assume that n = 2J for some J.

I Smoothing with wavelets requires thresholding instead of
truncation. That is, instead of choosing a smoothing
parameter that determines the number of terms to keep,
thresholding keeps coefficients that are sufficiently large.

I One example of thresholding is hard, universal thresholding.



11.3 Wavelets

Hard, universal thresholding.

1. Calculate

α̂ =
1

n

∑
i

φk(xi )Yi , and Dj ,k =
1

n

∑
k

ψj ,k(xi )Yi

for 0 ≤ j ≤ J − 1 where J = log2(n).

2. Apply universal thresholding

β̂j ,k =

{
Dj ,k if |Dj ,k | > threshold value
0 otherwise

3. Set r̂(x) = α̂φ(x) +
∑J−1

j=0

∑2j−1
k=0 b̂j ,kψj ,k(x).



Homework

For n = 10, 000, set xi = i/n and yi = doppler(xi ) + ei where
ei ∼ N(0, 0.052).

1. Use the trigonometric functions to estimate the regression
function.

2. Use the Legendre polynomials to estimate the regression
function.

3. Use the Harr wavelets to estimate the regression function.

For 1-3, try to use a small number of terms. You are okay to use
any programming libraries (that is, you do not need to make your
own code; just use standard libraries) but specify all parameters to
get your estimates.


