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11.1 Density estimation using orthogonal functions

> Let X1, X5, ..., X, be lID observations from a distribution on
[0, 1] with density f. If we assume that f € L2, we can write

F(x) = Bisi(x)
=0

where {¢;} is an orthonormal basis of L2[0,1].
> If we know f(x), the coefficient f; is given by

8 = /[0’1] F(x)d;(x)dx.

» The above formula looks similar to the Kernel density
estimation. But the basis function ¢;(x) does not necessarily
have measure 1 in contrast to the Kernel.

» Without knowing f(x), how can we calculate the coefficient
B;? We need to estimate it using the data.



11.1 Density estimation using orthogonal functions

> The estimate j3; of j3; is given by
PO
= Z j(xi)
Theorem. The mean and variance of Bj are
. . o2
El] =5, Var(b)) = —

where o7 = Var(¢;(X;)) = [(8(x) — B;)*f(x)dx.
Proof.

EB] = ZE[@ 0] = El6i(%) / b1 () (
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Exercise. Prove the variance.



11.1 Density estimation using orthogonal functions

» For a given f(x), we know that
J
> Bidi(x) (1)
J

is more accurate if J € N increases.

» This is not true anymore with the estimates {Bj}
Think about the regression. A higher order polynomial
regression function is not always better than a lower order
polynomial regression function (bias and variance tradeoff).

» Jis called the smoothing parameter. It is typically chosen
between 1 and \/n where n is the sample size. J is chosen so
that it minimizes the risk (or mean integrated squared
error).



11.1 Density estimation using orthogonal functions

Let f(x) is an estimate of f(x) given by
~ J ~
F(x) =2 Bii ().
J

Remember that the risk of f using a smoothing parameter J is the
expected value of the L2 error, that is

R(J))=E [/(f(x) - f(x))2dx] = i(i + i B2

j=1 j=J+1



11.1 Density estimation using orthogonal functions

Theorem. An estimate of the risk R(J) is

where a4 = max{a, 0} and

3= nil > (%) - Bf)z'

]

» Using the J* that minimizes R(J), the estimate of the density
f(x) is given by

b
Fx) =" Bigi(x)
J

> Note that f(x) can be negative!! If so, take f* = max(f, 0)
and normalize it.



11.2 Regression
For a data set {X;, Y;},

» Remember that the regression function r(x) is defined as the
expected value of Y given x

r(x) = E[Y|X = x].

» We studied parametric and nonparametric regressions. In
particular, for nonparametric regression, we know a kernel
density estimation based regression method.

> It is also possible to calculate a regression function using
density estimation with orthogonal functions.

» Assume that r(x) is in L2(0,1) and x; is uniformly distributed.

> r(x) =721 Bjdj(x) where §; = fo x)dx for an
orthonormal basis {¢;} of L3(0,1).



11.2 Regression

» The estimate of §3;, Bj is given by

1 n
= ; Z \//gbj(xl)v J = 1727"'
i=1

Theorem. )

~ g
B ~ N(Bj, —)
n
where 02 is the variance of the measurement error ¢;
Yi=r(x)+e

Idea of Proof. For the mean,

n

E[3)] = ZE[Y]¢J xi) = %Zr (xi)#j(xi)
i=1

~ [ s = 5



11.3 Wavelets

» Suppose that a regression function r(x) has a sharp jump but
that r(x) is otherwise very smooth. That is, r(x) is spatially

inhomogeneous.
> Doppler function 1/x(1 — x)sin (X2+.1.g5>
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11.3 Wavelets

Wavelets are local orthogonal functions.
Harr wavelet.

» Harr father wavelet (or Harr scaling function)

1 fo<xx<l1
o(x) = { 0 otherwise.

-1 fo<x<1)2
w(X)_{l if1/2<x<1

» For any integers j and k define
Wi k(x) = 222 x — k).

> Let W= {tjk, k =1,2,...,2/ — 1} be the set of rescaled and
shifted mother wavelets at resolution j.



11.3 Wavelets

Theorem. The set of functions

{¢7 W07 Wl? }

is an orthonormal basis for L2(0, 1).
Corollary. For any f € [%(0,1),

oo Y—1

F(x) = ag(x) + > D> Bikwiu(x)

j k=0

where o = fol f(x)p(x)dx, Bjx = fol f(x)¥j k(x)dx.
» « is called scaling coefficient.
» [k are called detail coefficients.
» In a finite sum approximation of f using J different scales

J 2-1

f(x) = ap(x) + Z Z Bj ki k(x)

j k=0

J represents the resolution of the approximation.



11.3 Wavelets

Regression.
» Consider the regression model Y; = r(x;) + oe; where
e~ N(0,1) and x; = i/n.
» For simplicity, assume that n = 27 for some J.

» Smoothing with wavelets requires thresholding instead of
truncation. That is, instead of choosing a smoothing
parameter that determines the number of terms to keep,
thresholding keeps coefficients that are sufficiently large.

» One example of thresholding is hard, universal thresholding.



11.3 Wavelets

Hard, universal thresholding.
1. Calculate

1 1
6= okx)Y;, and Djx= ;w,-,k(x,-)v,-
1
for 0 <j < J—1 where J = log,(n).
2. Apply universal thresholding

By = Dj« if |Dj x| > threshold value
LA N otherwise

3. Set A(x) = ag(x) + X720 Yo bjuth(x).



Homework

For n = 10,000, set x; = i/n and y; = doppler(x;) + e; where
e; ~ N(0,0.052).

1. Use the trigonometric functions to estimate the regression

function.

2. Use the Legendre polynomials to estimate the regression

function.

3. Use the Harr wavelets to estimate the regression function.
For 1-3, try to use a small number of terms. You are okay to use
any programming libraries (that is, you do not need to make your
own code; just use standard libraries) but specify all parameters to
get your estimates.



