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Lecture 9: Markov Chain Monte Carlo



9.1 Markov Chain

A Markov Chain Monte Carlo (MCMC) is a method producing an
ergodic Markov chain Xt whose stationary distribution is the
target density p(x).

I Markov Chain

I Ergodic

I Stationary



9.1 Markov Chain

I A stochastic process {Xt ∈ Ω, t ∈ T} is a collection of
random variables where Ω is the state space and T is the
index set.
Example. If {Xi} is IID, it is also a stochastic process with
an index t = i .
Example. Let Ω = {sunny,cloudy,rain,snow}. A typical
sequence might be

sunny,cloudy,snow,snow,snow,snow,sunny,

which is a stochastic process with a discrete index set.



9.1 Markov Chain

I A Markov chain is a stochastic process for which the
distribution of Xt depends only on Xt−1

µ(Xt = x |X0,X1, ...,Xt−1) = µ(Xt = x |Xt−1)

for all t and x .

I In general,

p(x1, x2, ..., xt) = p(x1)p(x2|x1)p(x3|x1, x2) · · · p(xt |x1, x2, ..., xt−1)

If Xt is a Markov chain,

p(x1, x2, ..., xt) = p(x1)p(x2|x1)p(x3|x2) · · · p(xt |xt−1)

I For simplicity, we will consider the case when the state space
is discrete.



9.1 Markov Chain

I The probability from Xt = j to Xt+1 = i

µ(Xt+1 = i |Xt = j) := pij

is call the transition probability.

I The matrix P whose (i , j) element is pij is called the transition
matrix.

I A Markov chain is homogeneous if the probability
µ(Xt+1 = i |Xt = j) does not change with time. That is

µ(Xt+1 = i |Xt = j) = µ(Xt = i |Xt−1 = j)

I It is straightforward to check that the n-th step probability

pij(n) := µ(Xt+n = i |Xt = j) = (Pn)ij



9.1 Markov Chain

I Chapman-Kolmogorov equations

pij(n + m) =
∑
k

pik(m)pkj(n).

I Let f0 be the initial probability. The marginal probability at
the n-th step fn such that fn(i) = µ(Xn = i) is given by

fn = Pnf0

because

fn(i) = µ(Xt = i) =
∑
k

µ(Xt = i |X0 = k)µ(X0 = k)

=
∑
k

pik(n)f0(k)



9.1 Markov Chain

I The state j reaches the state i (or i is accessible from j) if
pij(n) > 0 for some n and we write j → i .

I If j → i and i → j , we say i and j communicate.

I If all states communicate with each other, the chain is called
irreducible.

I A set of states is closed if, once you enter that set you never
leave.

I State i is recurrent or persistent if

µ(Xn = i for some n ≥ 1|X0 = i) = 1.

Otherwise, state i is transient.



9.1 Markov Chain

I Suppose X0 = j . The recurrence time Tij is defined as

Tij = min{n > 0 : Xn = i}

assuming Xn ever returns to state i , otherwise Tij =∞.

I The mean recurrence time of a recurrent state i is

mi = E [Tii ] =
∑
n

nfii (n)

where fii is the probability that the chain starting from state i
returns to state i at the n-th step for the first time, that is,

fii (n) = µ(X1 6= i ,X2 6= i , ...,Xn−1 6= i ,Xn = i |X0 = i).

I A recurrent state is null if mi =∞. Otherwise it is called
positive or non-null.



9.1 Markov Chain

I The period of state i , d(i), is gcd{n : pii (n) > 0}. Note that
it is gcd (the greatest common divisor), not the minimum
value.

I State i is periodic if d(i) > 1 and aperiodic if d(i) = 1.
I Definition. A state is ergodic if it is recurrent, non-null, and

aperiodic. A chain is ergodic if all its states are ergodic.
I Definition. A distribution π is stationary (or invariant) if

π = Pπ.

I Definiton. We say that a chain has a limiting distribution if
πi = limn→∞ pij(n) exists and is independent of j .

I Theorem. An irreducible, ergodic Markov chain has a unique
stationary distribution π. The limiting distribution exists and
is equal to π. If g is any bounded function, then, with
probability 1,

lim
n→∞

1

n

n∑
i

g(Xn)→ Eπ[g ]



9.1 Markov Chain

I Example. Let

P =

0 1 0
0 0 1
1 0 0

 .

Let π = (1/3, 1/3, 1/3). Then π is a stationary distribution of
P.

I Example. Let Ω = {1, 2, 3, 4, 5, 6}. Let

P =



1/2 1/4 1/4 1/4 0 0
1/2 3/4 1/4 0 0 0

0 0 1/4 1/4 0 0
0 0 1/4 1/4 0 0
0 0 0 0 1/2 1/2
0 0 0 1/4 1/2 1/2


I C1 = {1, 2} and C2 = {5, 6} are irreducible closed sets.
I States 3 and 4 are transient (note the path 3→ 4→ 6).
I All states are aperiodic because pii (1) > 0.
I 1,2,5 and 6 are ergodic.



9.1 Markov Chain

Exercise. Let P be a matrix of transition probabilities of a
homogeneous ergodic Markov chain on a finite state space such
that pij = pji . Find its stationary distribution.
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9.1 Markov Chain

Exercise. Let P be a matrix of transition probabilities of a
homogeneous ergodic Markov chain on a finite state space such
that pij = pji . Find its stationary distribution.

I A distribution π satisfies detailed balance if

pijπj = pjiπi

I If π satisfies detailed balance, it is a stationary distribution.
Idea of Proof. We want to show Pπ = π. The i-th
component of Pπ is∑

j

pijπj =
∑
j

pjiπi = πi
∑
j

pji = πi .



9.1 Markov Chain

Exercise. Let P be a matrix of transition probabilities of a
homogeneous ergodic Markov chain on a finite state space such
that pij = pji . Find its stationary distribution.

I A distribution π satisfies detailed balance if

pijπj = pjiπi

I If π satisfies detailed balance, it is a stationary distribution.

For the uniform distribution πj = 1/n, it satisfies the detailed
balance condition

pijπj = pjiπj = pjiπi .

Thus the uniform distribution is the stationary distribution.



9.1 Markov Chain

Exercise. Consider a homogeneous Markov chain on the finite
state space Ω = {1, 2, ..., r}. Assume that all the elements of the
transition matrix are positive. Prove that for any k ≥ 0 and any
x0, x1, ..., xk ∈ Ω,

µ(there is n such that xn = x0, xn+1 = x1, ..., xn+k = xk) = 1

Exercise. For a homogeneous Markov chain on a finite state space
Ω with transition matrix P and initial distribution π0, find

µ(xn = x1|x0 = x2, x2n = x3)

where x1, x2, x3 ∈ Ω.



9.2 MCMC: The Metropolis-Hastings Algorithm

Goal of MCMC: We want to draw a sample from a density f (x).
MCMC generates a Markov chain whose stationary density is the
target density.
The Metropolis-Hastings Algorithm. Let q(y |x) be a proposal
density where it is easy to draw a sample from q(y |x).

1. Choose X0 arbitrarily.

2. Suppose we have generated X0,X1, ...,Xt . To generate Xt+1,

3. Generate a proposal value Y from q(y |Xt).

4. Evaluate r := r(Y ,Xt) where

r(y , x) = min

{
f (y)q(x |y)

f (x)q(y |x)
, 1

}
.

5. Set

Xt+1 =

{
Y with probability r
Xt with probability 1-r



9.2 MCMC: The Metropolis-Hastings Algorithm

I Remark. If the proposal density is symmetric, that is,
q(y |x) = q(x |y),

r =

{
min

f (y)

q(x)
, 1

}
I A common choice for q(y |x) is a normal N(0, b2) for some

b > 0.

I Matlab/Python code



9.2 MCMC: The Metropolis-Hastings Algorithm

Example. MCMC samples for a Cauchy density p(x) = 1
π(1+x2)

using b = 10, 1, and .1.

I b = .1 forces the chain to take small steps. Thus the chain
doesn’t explore much of the sample space.

I b = 10 causes the proposals to often be far in the tails,
making r small. Thus we reject the proposal and keep the
current value.

I If the sample looks like the target distribution, the chain is
called ”mixing well”.

I Constructing a chain that mixes well is an art.



9.2 MCMC: The Metropolis-Hastings Algorithm

We need to restate the detailed balance condition in the
continuous case

I Let p(y , x) be the transition probability density from x to y .

I A probability density f (y) is stationary if

f (y) =

∫
p(y , x)f (x)dx

I Detailed balance

p(y , x)f (x) = p(x , y)f (y)

I If f satisfies detailed balance, f is a stationary distribution
because∫

p(y , x)f (x)dx =

∫
p(x , y)f (y)dx = f (y)

∫
p(x , y)dx = f (y)



9.2 MCMC: The Metropolis-Hastings Algorithm

We are going to show that the MCMC algorithm satisfies the
detailed balance condition.

I Consider two points x and y .

I Either

f (x)q(y |x) < f (y)q(x |y) or f (x)q(y |x) > f (y)q(x |y)

I Assume that f (x)q(y |x) > f (y)q(x |y) (if not, switch x and
y).

I r(y , x) = min
{

f (y)q(x |y)
f (x)q(y |x) , 1

}
= f (y)q(x |y)

f (x)q(y |x) and r(x , y) = 1.

I p(y , x) = q(y |x)r(y , x) = q(y |x) f (y)q(x |y)f (x)q(y |x) = f (y)
f (x)q(x |y).

That is, p(y , x)f (x) = f (y)q(x |y).

I Also p(x , y) = q(x |y)r(x , y) = q(x |y). That is,
p(x , y)f (y) = q(x |y)f (y).



9.3 Examples

• f (x , y) ∼ exp
(
−100x2

2 − y2

2

)
.



9.3 Examples

• f (x , y) ∼ exp
(
−100(x−y)2

2 − (x+y)2

2

)
.



9.3 Examples

• (The Rosenbrock density) f (x , y) ∼ exp
(
−100(y−x2)2+(1−x)2

20

)
.



9.4 Affine invariant MCMC sampler (Goodman and Weare,
’10)

I An affine transformation between affine spaces is a function
that preserves points, straight lines and planes.

I In a compact form, an affine transformation has the following
structure

y = Ax + b.

I The examples in 9.4 can be transformed into a simple problem
using affine transformations (exercise).

I Let us assume that there is an affine transformation that
makes a sampling in the transformed space is easy (we assume
only existence).



9.4 Affine invariant MCMC sampler (Goodman and Weare,
’10)

I In an abstract form, an MCMC sampler has the following
structure

xt+1 = R(xt , f , ξ)

for a function R where f is the target density and ξ is random
variables (like the uniform density random variable to
accpet/reject an proposal value).

I If R is an efficient sampling method in the transformed space,
the method need to preserve the affine transformation, that is,

Axt+1 + b = R(Axt + b, f , ξ)

I An MCMC sampler with affine invariance still requires a
tuning parameter but the parameter is independent of the
sample space dimension.



9.4 Affine invariant MCMC sampler (Goodman and Weare,
’10)

Walk-move MCMC sampler with affine invariance.

I Instead of running one Markov chain {xt}, there are K Markov
chains {xkt }, k = 1, 2, ...,K . Each chain is called ‘walker’.

I For a given k at time t, let
X k ′
t = {x1t , x2t , ..., xk−1t , xk+1

t , ..., xKt }, that is the other chain
values at the same time except x tk .

I xkt+1 is xkt + W with an acceptance probability

min{1, f (x
k
t +W )

f (xkt )
} where

W =
∑
j 6=k

Zj(x
j
t − x t),

Zj is standard normal, and t is the mean of X k ′
t . Note that

the covariance of W is the covariance of X k ′
t .



9.4 Affine invariant MCMC sampler (Goodman and Weare,
’10)

I Python implementation: ‘emcee’ (or MCMC hammer) at
http://dfm.io/emcee/current

I Matlab implementation: ‘gwmcmc’ at
https://www.mathworks.com/matlabcentral/fileexchange/49820-
ensemble-mcmc-sampler

I R implementation:
https://rdrr.io/github/SandaD/MCMCEnsembleSampler
/man/s.m.mcmc.html



9.5 Optimization

Goal. Find θ ∈ Ω that maximizes J(θ).
Deterministic methods

I Steepest descent, gradient descent, etc.

I Convexity is important.

I Find only local extrema if it is not convex.

Monte Carlo optimization

I Assume that J(θ) is nonnegative (if not, take J̃(θ) = eJ(θ)).

I Draw a sample {θt} from J(θ).

I Choose θ∗ such that J(θ∗) = max{θt}J(θ).

Additionally,



9.5 Optimization

Goal. Find θ ∈ Ω that maximizes J(θ).
Deterministic methods

I Steepest descent, gradient descent, etc.

I Convexity is important.

I Find only local extrema if it is not convex.

Monte Carlo optimization

I Assume that J(θ) is nonnegative (if not, take J̃(θ) = eJ(θ)).

I Draw a sample {θt} from J(θ).

I Choose θ∗ such that J(θ∗) = max{θt}J(θ).

Additionally,

I Use θ∗ as an initial value for a deterministic optimization
method.

I Use J(θ)n instead of J(θ).



9.5 Optimization

Example. Find θ ∈ [0, 1] that maximizes

J(θ) = cos(7θ) + sin(20θ)2.



Homework

1. Modify the one-dimensional MCMC code provided in the
lecture for sampling in n-dimensional spaces.

2. Use your MCMC code to generate a sample of size 10, 000
from a two-dimensional Gaussian with mean zero and a

covariance matrix

(
1 0.5

0.5 1

)
. Use (-4,4) as an initial value

for your chain. Please specify your proposal density for
sampling and related parameters.

3. Draw an empirical density of your sample.
4. Compare it with the true density. There are many different

ways to answer this question. Try as many as possible.
5. Draw an empirical density using only the last half of your

sample chain. Also compare this with the true density.
6. Compare the two empirical densities using the whole chain (3)

and the half last chain (5). Discuss their accuracy.
7. Find (x , y) ∈ [−1, 1]2 that minimizes

J(x , y) = (x sin(20y) + y sin(20x))2 cosh(sin(10x)x) +
(x cos(10y)− y sin(10x))2 cosh(cos(20y)y)


